US005892914A

United States Patent [(1] Patent Number: 5,892,914
Pitts [45] Date of Patent: *Apr. 6, 1999
[54] SYSTEM FOR ACCESSING DISTRIBUTED 5,058,000 10/1991 Cox et al. .cvvevvviiviiniicinne 395/600
DATA CACHE AT EACH NETWORK NODE 5,077,658 12/1991 Bendert et al. woooccoerivvcecen 395/600
TO PASS REQUESTS AND DATA 5,109,515 4/1992 Laggis et al. ...ccocoevvinvviinnnne 395/650
5,113,519 5/1992 Johnson et al.cceceevvervvennnnne. 395/600
. 1 : . 5,133,053 7/1992 Johnson et al. 395/200.03
[76] ~ Inventor: Lwoglﬁl?;yécal;?felggg;’ 780 Mora Dr., 5.155.808 10/1992 Shimizu 395/200.03
g : 5224205 6/1993 Dinkin et al. wooooovovvververrere. 395/200.2
[*] Notice: The term of this patent shall not extend Primary Examiner—Kenneth S. Kim
beyond the expiration date of Pat. No. Attorney, Agent, or Firm—Donald E. Schreiber
5,611,049. [57] ABSTRACT
[21] Appl. No.: 806,441 Network Distributed Caches (“NDCs”) (50) permit access-
S ing a named dataset stored at an NDC server terminator site
[22] Filed: Feb. 26, 1997 (22) in response to a request submitted to an NDC client
Co terminator site (24) by a client workstation (42). In accessing
Related U.S. Application Data the dataset, the NDCs (50) form a NDC data conduit (62)
[62] Division of Ser. No. 343,477, filed as PCT/US92/04939 Jun. thal provides an active virtual circuit (*AVC”) from the
3, 1992, published as W093/24890 Dec. 9, 1993, Pat. No. ~ NDC client site (24) through intermediate NDC sites (26B,
5,611,049. 26A) to the NDC server site (22). Through the AVC pro-
[51] Int. CL° GOGF 15/163 vided by the conduit (62), the NDC sites (22, 26A and 26B)
cCLE e . . project an image of the requested portion of the named
[52] US. Cl e 395/20(3).9459/,8 325/721010/13337, dataset into the NDC client site (24) where it may be cither
. e read or written by the workstation 42. The NDCs (50)
[58] Field of Search 711/137, 395/20033, maintain absolute consistency between the source dataset
395/200.48, 876, 200.49 and its projections at all NDC client terminator sites (24,
56 Ref Cited 204B and 206) at which client workstations access the
[56] elerences Lite dataset. Channels (116) in each NDC (50) accumulate pro-
U.S. PATENT DOCUMENTS filing data from the requests to access the dataset for which
they have been claimed. The NDCs (50) use the accumu-
4,422,145 12/1983 Sacco et al. [r—— 392/650 lated profile data stored in channels (116) to anticipate future
j’égz’géé ;ﬁgg‘; \I\f,aFtS(l)ln et i o 39 53/30/; (6)3 requests to access datasets, and, whenever possible, prevent
e cLsaaar € AL e " ‘ any delay to client workstations in accessing data by asyn-
4,714,992 12/1987 Gladney et al. 395/600 y delay g y asy
4,897,781 1/1990 Chang et al. 395/600 chronously pre-fe.tching the dgta in advance of receiving a
4,975,830 12/1990 Gerpheide et al. .. 395/200.1 request from a client workstation.
5,001,628 3/1991 Johnson et al. 395/600
5,056,003 10/1991 Hammer et al.cocovrverrnenesn. 395/650 16 Claims, 22 Drawing Sheets
I

22’

U.S. Patent Apr. 6, 1999 Sheet 1 of 22 5,892,914

FIG. 1

U.S. Patent

52’

26A’

11

Apr. 6, 1999

Sheet 2 of 22

5,892,914

50’

32

FIG. 2

U.S. Patent Apr. 6, 1999 Sheet 3 of 22 5,892,914

108 112
~~ ~
? A
52
50
32B 32C
32A

FIG. 3

FIG. 4A

U.S. Patent Apr. 6, 1999 Sheet 4 of 22 5,892,914
/z‘u% ------- AR kRERRRIAARERFAREERARANEA AR RARRETAAR AR DA AR EERRE XA RIRR AR
* Channel Structure:

---»-uu--xunxuuxnux..........--u...'...--..-.'.*;--.‘.;"J.-x-.‘.;.tt,‘n'u‘--‘u‘m-u,'u‘n%x.‘.-'.-h*‘/

typedef struct channel {
u_long c_flags; /* see defines below *
struct channel *c_forw; /* hash chain ptrs *
struct channel *c_back;
struct channel *av_forw; {* free list ptrs ¥
struct channel *av_back;
u_long c_state; /* see defines below *
struct channel *c_head; /* pointer to primary channel */
NDC_FH fh; /* file handle Wi
u_short c_error; /* channel error code */
u_short resid_err; /* unreported error from prev op */
u_short flush_level; /* channel flush level */
u_short s_sparet; I* Y
u_long refresh; /* time of last attributes refresh *
u_long c_size; /* size of file, channel’s view *
time_t atime; /* local time of last access */
time_t mtime; /* local time of last modification */
time_t ctime; /* local time file created *
NDC_STATS stats; /* filesystem stats *
NDC_ATTR attr; /* cached copy of attributes */
NDC_USS *uss; /* ptr to list of upstream sites *
INODE *ip; /* inode pointer ¥
struct channel *server_cp; /* downstream server’s channel ptr *
NDC_PID server_addr; /* address of the downstream site */
NDC_MSG *req_msg; /* request msg being processed */
NDC_MSG *msg_up; /* upstream msg chain ptr */
NDC_MSG *msg_down; /* downstream msg chain ptr */
SUBCHANNEL SC; /* 1st subchannel (built in) *
RATE c_rate; /* channel data rate *
RATE f_rate; /* file data rate */
int relse_time; /* time: channel placed on free list *
int splice_pnt; /* channel splice point *
int splice_cnt; /* channel splice count - *

} CHANNEL; ‘

U.S. Patent Apr. 6, 1999 Sheet 5 of 22 5,892,914

typedef struct subchannel {

struct channel *next; /* ptr to next subchannel */
struct channel ‘*ext; /* ptr to subchannel extension *
long offset; /* offset to start of segment */
long seg_length; /* amount of data in this subchannel */
long ext_length; /* amount of data in this extent */
long splice_pnt; /* expected start of next request *
RATE rate; /* client data rate *
long bufcount; /* # of buffers in bp[] array *
NDC_BD bd[NDC_MAX_BDS_SC]; /* buffer descriptor array *

} SUBCHANNEL,;

typedef struct {

long flags; /* flags: see below *

u_short leader; /* # of invalid leading bytes *

u_short trailer; /* # of invalid trailing bytes *

vime_t addr; /* address of buffer */

struct buf *bp; /* address of buffer header *
} NDC_BD;

/* NDC_BD.flags: *

#define BD_RECEIVE_DATA 0x0001 /* buffer expecting WRITE data ¥

#define BD_FRAG_REPLACE 0x0002 /* frag was REPLACEd *
#define BD_FRAG_EXTEND 0x0004 /* frag was EXTENDed */
#define BD_DIRTY_DATA 0x0008 /* buffer is DIRTY *
#define BD_INVAL 0x0010 /* buffer is INVALID Y
#define BD_MAPPED 0x0020 /* buffer has been MAPPED i
#define BD_FLUSHED 0x0040 /* buffer is being FLUSHed *
#define BD_CONJURED_BUF 0x0080 /* buffer was CONJURED *
FIG. 4B
FIG. 4A
.4
FIG. 4 Fic. 48

U.S. Patent Apr. 6, 1999 Sheet 6 of 22 5,892,914

/*

* CHANNEL.c_flags:

*

#define C_READ 0x00000001 /* reading *
#define C_WRITE 0x00000002 /* writing *
#define C_DECEASE 0x00000004 /* kill channel on release */
#define C_P_FLUSH 0x00000008 /* partial flush has been received *
#define C_EXCL 0x00000010 /* exclusive create */
#define C_ASYNC 0x00000020 /* client says "don’t wait” *
#define C_NOCACHE 0x00000040 /* discard channel on release */
#define C_ASYNC_IO 0x00000080 /* don’t wait for /O completion *
#define C_EOF 0x00000100 /* attempted to LOAD past the EOF %/
#idefine C_BUSY 0x00000200 /* not on av_forw/back list *
#define C_ERROR 0x00000400 /* error occurred, cp->c_error set *
#define C_BLOCKED 0x00000800 /* awaiting response to a request *

#define C_LOAD_AGAIN 0x00001000 /* all data NOT delivered, try again *
#define C_RELOAD 0x00002000 /* second pass through ndc_load() */
#define C_XXX6 0x00004000 /* */
#define C_XXX7 0x00008000 /* *
#define C_DIRTY_DATA 0x00010000 /* channel data has been modified ¥
#define C_DIRTY_ATTRS 0x00020000 /* channel attrs have been modified */

#define C_SOILED_ATTRS 0x00040000
#define C_DELAYED_WRITE0x00080000

0x00100000

/* attr times have been modified
/* channel is DIRTY

*
¥/

/* requested data found in the cache */
0x00200000 /* requested meta found in the cache */

#define C_CACHE_DATA
#define C_CACHE_ATTRS

#define C_DATA_VALID 0x00400000 /* valid data present *
#define C_ATTRS_VALID 0x00800000 /* valid attrs present X/
#define C_WANTED 0x01000000 /* issue wakeup when BUSY goes off ¥/
#define C_LOCKED 0x02000000 /* locked in core (not LRUable) *
#define C_EMPTY 0x04000000 /* channel has no buffers assigned */
#define C_DESTROY 0x08000000 /* channel is marked for destruction */
#define C_XXX8 0x10000000 /* */
#define C_SUBCHANEXT 0x20000000 /* this is a subchannel extension */
#define C_SUBCHANNEL 0x40000000 /* this is a subchannel *
#define C_HEAD 0x80000000 /* a channel header, not a channel *

#define CHANNEL_DIRTY (C_DIRTY_DATA | C_DIRTY_ATTRS)

#define NDC_PROPAGATE_UP_FLAGS

#define NDC_PROPAGATE_DOWN_FLAGS (C_EXCL|C_ASYNC|C_NOCACHE)

FIG. 5

U.S. Patent

/*

* CHANNEL.c_state:

*

Apr. 6, 1999

#define NDC_SITE_READING
#define NDC_SITE_WRITING
#define NDC_SITE_ACTIVE

#define NDC_SITE_IS_CCS

#define NDC_SITE_CACHING_ENABLED

#define NDC_SITE_REQUEST_REJECTED
#define NDC_SITE_ACCEPT_REJECTEE

Sheet 7 of 22

C_READ
C_WRITE

5,892,914

(C_READ | C_WRITE)

0x00000010
0x00000020

0x00000100
0x00000200

#define NDC_SITE_DEADLY_EMBRACE_REJECTED 0x00000400

#define NDC_SITE_CLIENT_TERM
#define NDC_SITE_SERVER_TERM

#define NDC_SITE_ALL_DEAD
#define NDC_SITE_NEW_CHANNEL

#define NDC_SITE_NEEDS_SERVICE
#define NDC_SITE_CLIENT _WRITE_THRU

#define NDC_SITE_REBOOTING
#define NDC_SITE_OFFLINE
#define NDC_SITE_ONLINE

/'h

0x00001000
0x00002000

0x00010000
0x00020000

0x00100000
0x00200000

0x20000000
0x40000000
0x80000000

* USE_ONCE & USE_MANY are defined to keep in sync with
* external documentation.

¥/
#define USE_ONCE
#define USE_MANY

0x00000000

NDC_SITE_CACHING_ENABLED

U.S. Patent Apr. 6, 1999 Sheet 8 of 22 5,892,914

k32A - 32&3k 32C \ 52

FIG. 7

U.S. Patent Apr. 6, 1999 Sheet 9 of 22 5,892,914

162
Mo 164
164
:.‘_.L g RS />;:;1_—.\J >;::: \¥162
N iz
— 152 =]

TR

FIG. 8

U.S. Patent

/***

Apr. 6, 1999

* Data Transport Protocol:

i***ii**********************ﬁ*******************************t***[

/*

* NDC_MSG.type:

*

#define NDC_ID

/* Configuration: */

#define NDC_GET_VERSION_NO

#define NDC_MOUNT
#define NDC_UNMOUNT

/* Data Transfer:

*

#define NDC_LOAD
#define NDC_FLUSH

#define NDC_LOAD_RELEASE
#define NDC_FLUSH_RELEASE

/* Control:

*/

#define NDC_LOOKUP
#define NDC_CREATE
#define NDC_REMOVE
#define NDC_RENAME
#define NDC_LINK
#define NDC_SYMLINK
#define NDC_RMDIR
#define NDC_STATFS
#define NDC_FSYNC
#define NDC_ACCESS
#define NDC_SYNCFS
#define NDC_QUOTA

#define NDC_DISABLE
#define NDC_RECALL

Sheet 10 of 22

5,892,914

((long)((W'<<8) | ('H’)) << 16)

(1| NDC_ID)
(2| NDC_ID)
(3| NDC_ID)

U.S. Patent

typedef struct ndc_msg {

fong
short

u_short

union {

type;
error;
flags;

union {

}

NDC_MOUNT_INFO
NDC_FH

NDC_ATTR
NDC_DIROP_ARGS
NDC_LOAD_ARGS
NDC_FLUSH_ARGS
NDC_RELEASE_ARGS
NDC_CREATE_ARGS
NDC_RENAME_ARGS
NDC_LINK_ARGS
NDC_SYMLINK_ARGS
NDC_PARTITION
NDC_DAEMON_TASK
NDC_MSG_CHAIN
NDC_SP_RW

NDC_CC_RECALL_ARGS

in;

union { _

}
}

NDC_MOUNT_INFO
NDC_STATS
NDC_ATTR
NDC_DIROP_RES
NDC_DATA
NDC_LOAD_RES
NDC_FLUSH_RES
NDC_PARTITION
NDC_DAEMON_TASK
NDC_MSG_CHAIN
NDC_SP_RW
NDC_CC_RECALL_RES
out;
un;

} NDC_MSG;

fidefinereq
#definersp

un.in
un.out

Apr. 6, 1999

marg;
fh;
sarg;
darg;
rdarg;
flarg;
relarg;
carg;
rarg;
larg;
slarg;
part;
task;
mc;
Sp;
rcarg;

mres;
stats;
attr;
dirres;
data;
rdres;
flres;
part;
task;
mc;
Sp;
rcres;

Sheet 11 of 22

/* message type
[* error type
/* message flags

/* NFS Proc #'s:

/*

*1, 5, 17

™2

/* 4, 10, 15

/*6

/*8

/*

/*9, 14

* 11

12

*13

/*

/* task for daemon
/* message chain
/* SP read/write

/* recall/disable caches

/* NFS Proc #'s:

/*

* 17

*1, 2

/* 4,9, 14

/*5

/*6

/*

/*

/* task for daemon
/* message chain
/* SP read/write

/* recall/disable caches

FIG. 10A

5,892,914

¥
*
X

*
*/
*
*/
*
*
*/
¥
¥/
¥/
*
*/
*
Wi
*/
i
*/

*
*f
¥/
*
*/
*
¥/
¥/
¥
¥/
*/
¥
*/

U.S. Patent Apr. 6, 1999 Sheet 12 of 22 5,892,914

/*
* NDC_MSG.flags:
Y

/*

* consistency control

*

#define NDC_MSG_SITE_READING 0x0001 /* down *
#define NDC_MSG_SITE_WRITING 0x0002 /* down *
#define NDC_MSG_SITE_RW_MASK 0x0003 . /* down *
#define NDC_MSG_SITE_RELEASE 0x0004 /* down *
#define NDC_MSG_SITE_DECEASE 0x0008 /* down *
#define NDC_MSG_SITE_ENABLED 0x0010 /* up *
/*

* request modifiers

*

#define NDC_REQ_EXCL 0x0020 /* down *
#define NDC_REQ_ASYNC 0x0040 /* down *
#define NDC_REQ_NOCACHE 0x0080 /* down *
/*

* request specific flags (overlaid)

Wi

#define NDC_MSG_XACT_DONE 0x0100 /* recall *
#define NDC_LOAD_ATTRS_ONLY 0x0100 /* read *
#define NDC_MSG_DATA_IS_COMMON 0x0200 /* read */
#idefine NDC_MSG_CONVERT_DATA 0x0400 /* readdir %/
/*

* response status

*

#define NDC_MSG_DATA_COMPLETE 0x1000 /* up/down */
#define NDC_MSG_ATTRS_PRESENT 0x2000 /* up/down */
#define NDC_RSP_REQUEST_REJECT 0x4000 /* up Y
#define NDC_MSG_DONE 0x8000 /* local */

FIG. 10B

FIG. 10A

FIG. 10 FIG. 10B

U.S. Patent

typedef struct filehandle {

long fsid;

long fid;

long gen;
} NDC_FH;

typedef long NDC_PID;

Apr. 6, 1999

Sheet 13 of 22

/* filesystem id
/* file id
/* generation number

FIG. 11A

5,892,914

*
*
*/

/*

* NDC_DATA.flags:

*/

#define NDC_DATA_DIRECT
#define NDC_DATA_INDIRECT

typedef struct {

u_short flags;
u_short len;
union {
vime_t ptr;
u_char bytes;
} un;
} NDC_DATA;

0x00
0x01

/* data present within structure
/* pointer to data is present

/* size: 8 or (4 + len)

FIG. 11B

¥

*/

typedef struct {

long fsid;

long S_num;
NDC_PID s_pid;
NDC_PID sp_pid;
long drive_set;
long disk_num;
long base;

long len;

} NDC_PARTITION;

/* File System ID

/* Server mgr num. (i.e. 0, 1, ...)

/* Server manager to own partition

/* PID of SP that partition is on

/* Which bank of drives is disk in

/* Whic disk in bank is partition on

/* Base of partition in 512 byte blocks
/* Length of partition in 512 byte blks

FIG. 11C

¥
¥
¥
Wi
*/
¥/
i
*

U.S. Patent Apr. 6, 1999 Sheet 14 of 22 5,892,914

typedef struct {

u_char spare; /* spare */
u_char status; /* attributes status (see below) */
u_short mode; /* file’s access mode and type *
uid_t uid; /* owner user id *
gid_t gid; /* owner group id *
u_long size; /* file size in bytes */
time_t atime; /* time of last access *f
time_t mtime; /* time of last modification */
} NDC_SATTR; /* size: 20 */

/*
* NDC_ATTR.status:
*
/

#define F_ACC 0x01 /* file has been accessed */
#define F_UPD 0x02 /* file has been modified */
#define F_CHG 0x04 /* inode has been changed */
#define F_XXX 0x08 /* *
#define F_ACC_SET 0x10 /* inode access time set by client */
#define F_UPD_SET 0x20 /* inode modify time set by client */
#define F_SIZE_SET 0x40 /* setattr changed the file size */
#define F_LOCK_SET 0x80 /* set file lock *
FIG. 11D

typedef struct {

NDC_PID daemon_pid; /* daemon assigned to this message */

struct ndc_msg *msg_ptr; /* message pointer ¥/

struct channel *cp; /* channel pointer */

} NDC_DAEMON_TASK; /* size: 12 *f
FIG. 11E

typedef struct ndc_upstream_site {

struct ndc_up_site *next; /* pointer to next uss *

short error; /* error, if any, upstream */

short spare;

short current_state; /* what we think’s happening *

short actual_state; /* what’s really happening *

NDC_PID upstream_pid; /* address of upstream site *
} NDC_USS;

FIG. 11F

U.S. Patent Apr. 6, 1999 Sheet 15 of 22 5,892,914

~
»

Buffer Descriptor:

An NDC_BUF_DESC uses the high order bits to address the
common memory data buffer. Since the buffers are aligned on
block boundaries (8K and likely to grow in the future), the low
order bits can be used to specify:

o the segment number to which the buffer belongs for READs,

o the number of invalid trailing bytes in the buffer for WRITEs.

* % % % * * ¥ * ¥ * * %

NDC_BUF_DESC: AAAAAAAA AAAAAAAA AAASSSSS SSSSSSSS
*/
typedef long NDC_BUF_DESC;

/i

* Segment Descriptor:
*

typedef struct {

long offset;
long count;
} NDC_SD; /* size: 8 */

/Q

* Flush Descriptor:
*/

typedef struct {

long offset; /* offset, need not be block aligned *
NDC_BUF_DESC bd; /* buffer descriptor *
} NDC_FLUSH_DESC; /* size: 8 *

FIG. 11G

U.S. Patent Apr. 6, 1999 Sheet 16 of 22 5,892,914

typedef struct {

struct channel *cp; /* channel ptr: read_more, read_relse *
NDC_FH fh; /* file handle *
long no_segs; /* # of segments to read */
NDC_SD sd[MAX_SEGS]; /* segment descriptors */
} NDC_LOAD_ARGS; /* size: 20 + (8 * X) *
typedef struct {
struct channel *cp; /* channel ptr: read_more, read_trelse */
short bd_cnt; /* # of bd[]s being returned */
short seg_cnt; /* # of segments being returned */
NDC_BUF_DESC bd[MAX_BDS]; /* buf descriptors */
NDC_ATTR attr; /* note: bd[] may overrun attrs when *
/* NDC_RSP_ATTRS_PRESENT is not set */
} NDC_LOAD_RES; /* size: 56 + (4 * X) */
typedef struct {
struct channel *cp; /* chan ptr: flush_more, flush_relse *
NDC_FH fh; /* file handle *
short level, /* flush level */
short no_fds; /* # of fd[]s being flushed */
NDC_SATTR sattr; /* file attributes (writable) *
NDC_FLUSH_DESC f{d[MAX_FDS]; /* flush descriptors *
} NDC_FLUSH_ARGS; /* size: 40 + (8 * X) *f
typedef struct {
struct channel *cp; /* chan ptr: flush_more, flush_relse *
NDC_FH fh; /* file handle *
short level; /* flush level */
short no_fds; /* # of fd[]s being flushed *
NDC_ATTR attr; /* file attributes */
} NDC_FLUSH_RES; /* size: 68 */
typedef struct {
struct channel *cp; /* channel pointer *
NDC_FH fh; /* file handle */
short error; {* error */
} NDC_RELEASE_ARGS; /* size: 18 *

FIG. 11H

U.S. Patent Apr. 6, 1999 Sheet 17 of 22 5,892,914

typedef struct {

NDC_FH - fh;

NDC_DATA name;
} NDC_DIROP_ARGS; /* size: 20 or 16 + NDC_DATA.len */
typedef struct {

NDC_FH fh;

NDC_ATTR attr;
} NDC_DIROP_RES; /* size: 60 ¥

typedef struct {
NDC_DIROP_ARGS where;
NDC_ATTR attr;
} NDC_CREATE_ARGS; /* size: 68 or 64 + NDC_DATA.len *

typedef struct {
NDC_DIROP_ARGS from;
NDC_DIROP_ARGS to;

} NDC_RENAME_ARGS; /* size: 2*(20 or 16 + NDC_DATA.len) */
typedef struct {

NDC_FH from;

NDC_DIROP_ARGS to;
} NDC_LINK_ARGS; /* size: 32 or 28 + NDC_DATA.len *

typedef struct {
NDC_DIROP_ARGS from;

NDC_ATTR attr;
NDC_DATA link;
} NDC_SYMLINK_ARGS; /* size: 76 or 68 + (2*NDC_DATA.len) *
typedef struct {
NDC_FH file; /* OUT: filesystem root file handle *
NDC_PARTITION part; /* IN/OUT: Describes partition to use ¥/
NDC_DATA path; /* IN: mount point pathname *
} NDC_MOUNT_INFO; /* size: 52 or 48 + NDC_DATA.len *
FIG. 11l

FIG. 11A FIG. 11D
FIG. 11B FIG. 11E FIG. 11G FIG. 11H FIG. 111

FIG. 11 FIG. 11C | | FIG. 11F

U.S. Patent

Apr. 6, 1999 Sheet 18 of 22

5,892,914

Message chains are used to group together a series of related messages
that are to be submitted and processed as an atomic unit. A message chain
is "done” only when all messages have been dispatched to their respective

message types capable of being chained must align with the structure
NDC_MSG_CHAIN defined below. The message types that employ chaining

*
*
*
* destinations and the response for each message has been received. All
*
*
*

are: NDC_SP_RW, and NDC_CC_RECALL_ARGS/NDC_CC_RECALL_RES.

typedef struct {
struct channel
struct ndc_msg

} NDC_MSG_CHAIN;

typedef struct {
struct channel
struct ndc_msg
u_char
u_char
short
short
u_long
vme_t

} NDC_SP_RW;

typedef struct {
struct channel

*msg_head_cp;
*next_msg;

*msg_head_cp;
*next_msg;
scsi_id;
disk_number;
sector_cnt;
block_size;
sector_adr;
vme_adr[NDC_SP_MAX_CONTIG];
/* size: 20 + (4 * X)

*msg_head_cp;

struct ndc_msg *next_msg;
struct channel *uss_cp;
NDC_FH th;
short expected_state;
} NDC_CC_RECALL_ARGS; /* size: 26

typedef struct {
struct channel
struct ndc_msg
struct channel
short
short
long
time_t
NDC_FLUSH_DESC

*msg_head_cp;

*next_msg,

*uss_cp,;

actual_state;

no_fds; /* # of fd[]s being flushed
size; /* file size

mtime; /* modification time

fd[MAX_FDS];

} NDC_CC_RECALL_RES; /* size: 24 + (8 * X)

FIG. 12

*

¥/

*
¥/
*

*

U.S. Patent

Apr. 6, 1999 Sheet 19 of 22 5,892,914
typedef struct {
u_char vis_flag; /* filesystem flags *
u_char status; /* attributes status (see below) */
u_short b_limit; /* block limit: !0 => max delta more *
u_short type; /* vnode type (for create) *
u_short mode; /* file’'s access mode and type *
uid_t uid; /* owner user id */
gid_t gid; /* owner group id *
short nlink; /* number of references to file *f
dev_t rdev; /* device the file represents *
long fsid; /* file system id (dev for now) */
long nodeid; /* node id */
u_long size; /* file size in bytes *
long blocks; /* kbytes of disk space held by file ¥/
long blocksize; /* blocksize preferred for i/o *
time_t atime; /* time of last access *
time_t mtime; /* time of last modification *
time_t ctime; /* time file created */
} NDC_ATTR; /* size: 48 *
FIG. 13A
typedef struct {
long bsize; /* fundamental file system block size */
long blocks; /* total blocks in file system */
long bfree; /* free blocks in fs *
long bavail; /* free blocks avail to non-superuser */
u_long files; /* total number of file slots *
u_long ffree; /* number of free file slots *
} NDC_STATS; /* size: 24 *
FIG. 13B
FIG. 13A
FIG. 13 FIG. 13B

U.S. Patent Apr. 6, 1999 Sheet 20 of 22

typedef struct ndc_up_site {
struct ndc_up_site *next;

short error;

short spare;

short current_state;
short actual_state;

NDC_PID upstream_pid;
} NDC_USS;

/* pointer to next uss
/* error, if any, upstream

/* what we think’s happening
/* what's really happening

/* addr of upstream site

/* size: 16

FIG. 14

5,892,914

¥/ 182

U.S. Patent Apr. 6, 1999 Sheet 21 of 22 5,892,914

U.S. Patent Apr. 6, 1999 Sheet 22 of 22 5,892,914

000
RRE

FIG. 16

5,892,914

1

SYSTEM FOR ACCESSING DISTRIBUTED
DATA CACHE AT EACH NETWORK NODE
TO PASS REQUESTS AND DATA

This is a division of application Ser. No. 08/343,477 filed
Nov. 28, 1994, that issued Mar. 11, 1997, as U.S. Pat. No.
5,611,049, and that claimed priority under 35 U.S.C. § 371
from Patent Cooperation Treaty (“PCT”) International
Patent Application PCT/US92/04939 filed Jun. 3, 1992.

TECHNICAL FIELD

The present invention relates generally to the technical
field of multi-processor digital computer systems and, more
particularly, to multi-processor computer systems in which:

1. the processors are loosely coupled or networked
together;

2. data needed by some of the processors is controlled by
a different processor that manages the storage of and
access to the data;

3. processors needing access to data request such access
from the processor that controls the data;

4. the processor controlling data provides requesting
processors with access to it.

BACKGROUND ART

Within a digital computer system, processing data stored
in a memory; e.g., a Random Access Memory (“RAM”) or
on a storage device such as a floppy disk drive, a hard disk
drive, a tape drive, etc.; requires copying the data from one
location to another prior to processing: Thus, for example,
prior to processing data stored in a file in a comparatively
slow speed storage device such as hard disk, the data is first
copied from the computer system’s hard disk to its much
higher speed RAM. After data has been copied from the hard
disk to the RAM, the data is again copied from the RAM to
the computer system’s processing unit where it is actually
processed. Each of these copies of the data, i.e., the copy of
the data stored in the RAM and the copy of the data
processed by the processing unit, can be considered to be
image of the data stored on the hard disk. Each of these
images of the data may be referred to as a projection of the
data stored on the hard disk.

In a loosely coupled or networked computer system
having several processors that operate autonomously, the
data needed by one processor may be accessed only by
communications passing through one or more of the other
processors in the system. For example, in a Local Area
Network (“LLAN”) such as Ethernet one of the processors
may be dedicated to operating as a file server that receives
data from other processors via the network for storage on its
hard disk, and supplies data from its hard disk to the other
processors via the network. In such networked computer
systems, data may pass through several processors in being
transmitted from its source at one processor to the processor
requesting it.

In some networked computer systems, images of data are
transmitted directly from their source to a requesting pro-
cessor. One operating characteristic of networked computer
systems of this type is that, as the number of requests for
access to data increase and/or the amount of data being
transmitted in processing each request increases, ultimately
the processor controlling access to the data or the data
transmission network becomes incapable of responding to
requests within an acceptable time interval. Thus, in such
networked computer systems, an increasing workload on the

10

15

20

25

30

35

40

45

50

55

60

65

2

processor controlling access to data or on the data transmis-
sion network ultimately causes unacceptably long delays
between a processor’s request to access data and completion
of the requested access.

In an attempt to reduce delays in providing access to data
in networked computer systems, there presently exist sys-
tems that project an image of data from its source into an
intermediate storage location in which the data is more
accessible than at the source of the data. The intermediate
storage location in such systems is frequently referred to as
a “cache,” and systems that project images of data into a
cache are be referred to as “caching” systems.

An important characteristic of caching systems, fre-
quently referred to as “cache consistency” or “cache
coherency,” is their ability to simultaneously provide all
processors in the networked computer system with identical
copies of the data. If several processors concurrently request
access to the same data, one processor may be updating the
data while another processor is in the process of referring to
the data being updated. For example, in commercial trans-
actions occurring on a networked computer system one
processor may be accessing data to determine if a customer
has exceeded their credit limit while another processor is
simultaneously posting a charge against that customer’s
account. If a caching system lacks cache consistency, it is
possible that one processor’s access to data to determine if
the customer has exceeded their credit limit will use a
projected image of the customer’s data that has not been
updated with the most recent charge. Conversely, in a
caching system that possesses complete or absolute cache
consistency, the processor that is checking the credit limit is
guaranteed that the data it receives incorporates the most
recent modifications.

One presently known system that employs data caching is
the Berkeley Software Distribution (“BSD”) 4.3 version of
the Unix timesharing operating system. The BSD 4.3 system
includes a buffer cache located in the host computer’s RAM
for storing projected images of blocks of data, typically 8 k
bytes, from files stored on a hard disk drive. Before a
particular item of data may be accessed on a BSD 4.3
system, the requested data must be projected from the hard
disk into the buffer cache. However, before the data may be
projected from the disk into the buffer cache, space must first
be found in the cache to store the projected image. Thus, for
data that is not already present in a BSD 4.3 system’s buffer
cache, the system must perform the following steps in
providing access to the data:

Locate the buffer in the RAM that contains the Least

Recently Used (“LRU”) block of disk data.

Discard the LRU block of data which may entail writing

that block of data back to the hard disk.

Project an image of the requested block of data into the

now empty buffer.

Provide the requesting processor with access to the data.
If the data being accessed by a processor is already present
in a BSD 4.3 system’s data cache, then responding to a
processor’s request for access to data requires only the last
operation listed above. Because accessing data stored in
RAM is much faster that accessing data stored on a hard
disk, a BSD 4.3 system responds to requests for access to
data that is present in its buffer cache in approximately %2soth
the time that it takes to respond to a request for access to data
that is not already present in the buffer cache.

The consistency of data images projected into the buffer
cache in a BSD 4.3 system is excellent. Since the only path
from processors requesting access to data on the hard disk is

5,892,914

3

through the BSD 4.3 system’s buffer cache, out of date
blocks of data in the buffer cache are always overwritten by
their more current counterpart when that block’s data returns
from the accessing processor. Thus, in the BSD 4.3 system
an image of data in the system’s buffer cache always reflects
the true state of the file. When multiple requests contend for
the same image, the BSD 4.3 system queues the requests
from the various processors and sequences the requests such
that each request is completely serviced before any process-
ing commences on the next request. Employing the preced-
ing strategy, the BSD 4.3 system ensures the integrity of data
at the level of individual requests for access to segments of
file data stored on a hard disk.

Because the BSD 4.3 system provides access to data from
its buffer cache, blocks of data on the hard disk frequently
do not reflect the true state of the data. That is, in the BSD
4.3 system, frequently the true state of a file exists in the
projected image in the system’s buffer cache that has been
modified since being projected there from the hard disk, and
that has not yet been written back to the hard disk. In the
BSD 4.3 system, images of data that are more current than
and differ from their source on the hard disk data may persist
for very long periods of time, finally being written back to
the hard disk just before the image is about to be discarded
due to its “death” by the LRU process. Conversely, other
caching systems exist that maintain data stored on the hard
disk current with its image projected into a data cache.
Network File System (“NFS®”) is one such caching system.

In many ways, NFS’s client cache resembles the BSD 4.3
systems buffer cache. In NFS, each client processor that is
connected to a network may include its own cache for
storing blocks of data. Furthermore, similar to BSD 4.3,
NEFS uses the LRU algorithm for selecting the location in the
client’s cache that receives data from an NFS server across
the network, such as Ethernet. However, perhaps one of
NFS’s most significant differences is that images of blocks
of data are not retrieved into NFS’s client cache from a hard
disk attached directly to the processor as in the BSD 4.3
system. Rather, in NFS images of blocks of data come to
NFES’s client cache from a file server connected to a network
such as Ethernet.

The NFS client cache services requests from a computer
program executed by the client processor using the same
general procedures described above for the BSD 4.3 sys-
tem’s buffer cache. If the requested data is already projected
into the NFS client cache, it will be accessed almost instan-
taneously. If requested data is not currently projected into
NFS’s client cache, the LRU algorithm must be used to
determine the block of data to be replaced, and that block of
data must be discarded before the requested data can be
projected over the network from the file server into the
recently vacated buffer.

In the NFS system, accessing data that is not present in its
client cache takes approximately 500 times longer than
accessing data that is present there. About one-half of this
delay is due to the processing required for transmitting the
data over the network from an NFS file server to the NFS
client cache. The remainder of the delay is the time required
by the file server to access the data on its hard disk and to
transfer the data from the hard disk into the file server’s
RAM.

In an attempt to reduce this delay, client processors read
ahead to increase the probability that needed data will have
already been projected over the network from the file server
into the NFS client cache. When NFS detects that a client
processor is accessing a file sequentially, blocks of data are
asynchronously pre-fetched in an attempt to have them

10

15

20

25

30

35

40

45

50

55

60

65

4

present in the NFS client cache when the client processor
requests access to the data. Furthermore, NFS employs an
asynchronous write behind mechanism to transmit all modi-
fied data images present in the client cache back to the file
server without delaying the client processor’s access to data
in the NFS client cache until NFS receives confirmation
from the file server that it has successfully received the data.
Both the read ahead and the write behind mechanisms
described above contribute significantly to NFS’s reason-
ably good performance. Also contributing to NFS’s good
performance is its use of a cache for directories of files
present on the file server, and a cache for attributes of files
present on the file server.

Several features of NFS reduce the consistency of its
projected images of data. For example, images of file data
present in client caches are re-validated every 3 seconds. If
an image of a block of data about to be accessed by a client
is more than 3 seconds old, NFS contacts the file server to
determine if the file has been modified since the file server
originally projected the image of this block of data. If the file
has been modified since the image was originally projected,
the image of this block in the NFS client cache and all other
projected images of blocks of data from the same file are
removed from the client cache. When this occurs, the buffers
in RAM thus freed are queued at the beginning of a list of
buffers (the LRU list) that are available for storing the next
data projected from the file server. The images of blocks of
data discarded after a file modification are re-projected into
NFS’s client cache only if the client processor subsequently
accesses them.

If a client processor modifies a block of image data
present in the NFS client cache, to update the file on the file
server NFS asynchronously transmits the modified data
image back to the server. Only when another client processor
subsequently attempts to access a block of data in that file
will its cache detect that the file has been modified.

Thus, NFS provides client processors with data images of
poor consistency at reasonably good performance. However,
NFS works only for those network applications in which
client processors don’t share data or, if they do share data,
they do so under the control of a file locking mechanism that
is external to NFS. There are many classes of computer
application programs that execute quite well if they access
files directly using the Unix File System that cannot use NFS
because of the degraded images projected by NFS.

Another limitation imposed by NFS is the relatively small
size (8 k bytes) of data that can be transferred in a single
request. Because of this small transfer size, processes
executing on a client processor must continually request
additional data as they process a file. The client cache, which
typically occupies only a few megabytes of RAM in each
client processor, at best, reduces this workload to some
degree. However, the NFS client cache cannot mask NFS’s
fundamental character that employs constant, frequent com-
munication between a file server and all of the client
processors connected to the network. This need for frequent
server/client communication severely limits the scalability
of an NFS network, i.e., severely limits the number of
processors that may be networked together in a single
system.

Andrew File System (“AFS”) is a data caching system
that has been specifically designed to provide very good
scalability. Now used at many universities, AFS has dem-
onstrated that a few file servers can support thousands of
client workstations distributed over a very large geographic
area. The major characteristics of AFS that permit its scal-
ability are:

5,892,914

5

The unit of cached data increases from NFS’s 8 k disk
block to an entire file. AFS projects complete files from
the file server into the client workstations.

Local hard disk drives, required on all AFS client
workstations, hold projected file images. Since AFS
projects images of complete files, its RAM is quickly
occupied by image projections. Therefore, AFS
projects complete files onto a client’s local hard disk,
where they can be locally accessed many times without
requiring any more accesses to the network or to the file
server.

In addition to projecting file images onto a workstation’s
hard disk, similar to BSD 4.3, AFS also employs a
buffer cache located in the workstation’s RAM to store
images of blocks of data projected from the file image
stored on the workstation’s hard disk.

Under AFS, when a program executing on the workstation
opens a file, a new file image is projected into the worksta-
tion from the file server only if the file is not already present
on the workstation’s hard disk, or if the file on the file server
supersedes the image stored on the workstation’s hard disk.
Thus, assuming that an image of a file has previously been
projected from a network’s file server into a workstation, a
computer program’s request to open that file requires, at a
minimum, that the workstation transmit at least one message
back to the server to confirm that the image currently stored
on its hard disk is the most recent version. This re-validation
of a projected image requires a minimum of 25 milliseconds
for files that haven’t been superseded. If the image of a file
stored on the workstation’s hard disk has been superseded,
then it must be re-projected from the file server into the
workstation, a process that may require several seconds.
After the file image has been re-validated or re-projected,
programs executed by the workstation access it via AFS’s
local file system and its buffer cache with response compa-
rable to those described above for BSD 4.3.

The consistency of file images projected by AFS start out
as being “excellent” for a brief moment, and then steadily
degrades over time. File images are always current imme-
diately after the image has been projected from the file
server into the client processor, or re-validated by the file
server. However, several clients may receive the same file
projection at roughly the same time, and then each client
may independently begin modifying the file. Each client
remains completely unaware of any modifications being
made to the file by other clients. As the computer program
executed by each client processor closes the file, if the file
has been modified the image stored on the processor’s hard
disk is transmitted back to the server. Each successive
transmission from a client back to the file server overwrites
the immediately preceding transmission. The version of the
file transmitted from the final client processor to the file
server is the version that the server will subsequently
transmit to client workstations when they attempt to open
the file. Thus at the conclusion of such a process the file
stored on the file server incorporates only those modifica-
tions made by the final workstation to transmit the file, and
all modifications made at the other workstations have been
lost. While the AFS file server can detect when one work-
station’s modifications to a file overwrites modifications
made to the file by another workstation, there is little the
server can do at this point to prevent this loss of data
integrity.

AFS, like NFS, fails to project images with absolute
consistency. If computer programs don’t employ a file
locking mechanism external to AFS, the system can support
only applications that don’t write to shared files. This

10

15

20

25

30

35

40

45

50

55

60

65

6

characteristic of AFS precludes using it for any application
that demands high integrity for data written to shared files.

DISCLOSURE OF INVENTION

An object of the present invention is to provide a digital
computer system capable of projecting larger data images,
over greater distances, at higher bandwidths, and with much
better consistency than the existing data caching mecha-
nisms.

Another object of the present invention is to provide a
generalized data caching mechanism capable of projecting
multiple images of a data structure from its source into sites
that are widely distributed across a network.

Another object of the invention is to provide a generalized
data caching mechanism in which an image of data always
reflects the current state of the source data structure, even
when it is being modified concurrently at several remote
sites.

Another object of the present invention is to provide a
generalized data caching mechanism in which a client
process may operate directly upon a projected image as
though the image were actually the source data structure.

Another object of the present invention is to provide a
generalized data caching mechanism that extends the
domain over which data can be transparently shared.

Another object of the present invention is to provide a
generalized data caching mechanism that reduces delays in
responding to requests for access to data by projecting
images of data that may be directly processed by a client site
into sites that are “closer” to the requesting client site.

Another object of the present invention is to provide a
generalized data caching mechanism that transports data
from its source into the projection site(s) efficiently.

Another object of the present invention is to provide a
generalized data caching mechanism that anticipates future
requests from clients and, when appropriate, projects data
toward the client in anticipation of the client’s request to
access data.

Another object of the present invention is to provide a
generalized data caching mechanism that maintains the
projected image over an extended period of time so that
requests by a client can be repeatedly serviced from the
initial projection of data.

Another object of the present invention is to provide a
generalized data caching mechanism that employs an effi-
cient consistency mechanism to guarantee absolute consis-
tency between a source of data and all projected images of
the data.

Briefly the present invention in its preferred embodiment
includes a plurality of digital computers operating as a
network. Some of the computers in the network function as
Network Distributed Cache (“NDC”) sites. Operating in the
digital computer at each NDC site is an NDC that includes
NDC buffers. The network of digital computers also
includes one or more client sites, which may or may not be
NDC sites. Each client site presents requests to an NDC to
access data that is stored at an NDC site located somewhere
within the network. Each item of data that may be requested
by the client sites belongs to a named set of data called a
dataset. The NDC site storing a particular dataset is called
the NDC server terminator site for that particular dataset.
The NDC site that receives requests to access data from the
client site is called the NDC client terminator site. A single
client site may concurrently request to access different
datasets that are respectively stored at different NDC sites.

