United States Patent [

Silver et al.

R 00 0T R
US005481712A

Patent Number:
Date of Patent:

5,481,712
Jan. 2, 1996

(11]
[45]

[54] METHOD AND APPARATUS FOR
INTERACTIVELY GENERATING A
COMPUTER PROGRAM FOR MACHINE
VISION ANALYSIS OF AN OBJECT

[75] Inventors: William M. Silver, Medfield; Samuel

Druker, Brookline, both of Mass.;
Philip Romanik, West Haven, Conn.;
Carroll Arbogast, Necedham, Mass.

[73] Assignee: Cognex Corporation, Natick, Mass.

[21] Appl. No.: 43,295

[22] Filed: Apr. 6, 1993

(51] Int. CLS GO6F 9/44

[52] US.Cl .o 395/700; 395/161; 364/DIG. 1;

364/286.2; 364/286.3

[58] Field of Search 395/700, 161,

395/158
[56] References Cited
U.S. PATENT DOCUMENTS
4,831,580 5/1989 Yamadaccceeeereecrrenees 364/DIG. 2
5,287,449 2/1994 KOJIMA ..coereerecserenerereresassnnnsene 395/161

OTHER PUBLICATIONS

Medina—Mora et al. (1981) An Incremental Programming
Environment, IEEE Transactions on Software Eng.
SE-7:472-482.

Teitelbaum et al. (1981) The Cornell Program Synthesizer:

A Syntax—Directed Programming Environment, Communi-
cations of the ACM 24:563-573.

Primary Examiner—Thomas M. Heckler
Attorney, Agent, or Firm—Choate, Hall & Stewart

[571 ABSTRACT

A system for interactively generating a computer program
for machine vision analysis insures that the program is
correct by permitting the operator to make only syntactically
correct modifications to the program. The system includes
an element for storing the computer program being gener-
ated. A further element displays the program to the operator.
A positioning element demarks a location of interest within
the program. A menu element displays permissible program-
ming modifications for the location of interest. The menu
element incorporates in its display of permissible program-
ming modifications statements for machine vision analysis
of an object image, e.g., calls to machine vision subroutines
and functions. To facilitate specification of input parameters
to those subroutines and functions, the imaging element can
generate a candidate image of the object upon which the
machine vision analysis is to be run. A graphical input
element displays over that candidate image a graphical icon
that the operator can manipulate to specify the parameters.
A textual input element can display an icon, e.g., a dialog
box, prompting the operator to designate textually input
parameters for the machine vision tool. An update element
responds to the operator selection by appropriately modify-
ing the stored program.

34 Claims, 3 Drawing Sheets

L-200
SELECT
Tool
205
22 /I/Ml e
204
r
INPUT PARANETER
SELECTION 05
208 | PARAMEIER
g,u,;/;/;m SELECTION TEXTUAL 210
W
TYPE | [IHPUT
22~ l 220
CRAPKICAL IHPUT | ;rf)(rm weur
[1
a-H r-nim : |
| 1| omws |12
| 1 80x
i I
216~ s0x = :
! L
230
YPOATE
PROGRAH
b
268~ HPUT PARAK'S 234
PROGRAN L—7
{232 STORE
266 250 250
7 f CANIDATE r
INAGE
USER IXPUT DISPLAY INAGING

2527

U.S. Patent Jan. 2, 1996 Sheet 1 of 3 5,481,712

/0'\
18
USER
WRUT 5
It sy S —
, | , 35
s I | Postrion ! !
| +—a
| HEKY {—‘M}b POSITIONING :
|
| | | |
] oo |
| - | |
SELECTION | }
| I 32
POSITION LZ,”W” | '
—e—j§ | 2 {
]
v ¢ { Y i
PROGRAM — | !
e
UPDATE |— STORF ———{» DISPLAY i
) f UPDATED (PROGRAN | |
J PROCRAM 24 I |
R 22 5] I — "

FIG. 1

U.S. Patent Jan. 2, 1996 Sheet 2 of 3 5,481,712

_~200

SELECT
1001

205
zoz/lm /‘

/?04
WPyT PAﬁAﬂff[/?_
SELECTION 206
208 PARAMETER
GRAPHICAL SELECTION TEXTUAL 210
IKPUT WPUT
TYPE
22~ i ‘ l - 220
—_—_Y I 2,
}—6:,94/’///6',4[IKPUT B CIEXTUAL IKPYT -—i

2413 r-nup

80

|
|
oo | 4222
I
I
|
|
-

-

f?]ﬂ

YPOATF
PROGRAN |@ ‘

268~ NPUT PARAH'S === o e — q 23
P 0 rrocran -’
' Gz M sioRE |
b -
266 260 250
1 v [CAMIDATE [
IMAGE

USER INPUT @9l D1SPLAY ,:;_ INAGINE
| 252

FIG. 2

U.S. Patent Jan. 2, 1996 Sheet 3 of 3 5,481,712

/3/0
/‘J/Z

320
HONITOR L
DEVELOPHENT
[SYSTEH
POINT KEYBOARD
_ 'y
[-3/6 [3/4
| _~3/8
[~522
v FJJO
HOKNITOR 340
VISION ‘L> 70
r PROCESSOR ‘4—-—: 170
& JEVICES
POINT KEYBOARD
Csz6 Csg 44444
38 ww |_—JJ8
.
[> CAMERA V———— 9l DIGITIZER
YVYVVYY
AUTOMATED

FIG. 3 gt

5,481,712

1
METHOD AND APPARATUS FOR
INTERACTIVELY GENERATING A
COMPUTER PROGRAM FOR MACHINE
VISION ANALYSIS OF AN OBJECT

BACKGROUND

This invention relates generally to machine vision and,
more particularly, to programming digital data processing
systems for machine vision analysis of images.

Prior art machine vision systems may be classified as
either special-purpose systems or development systems.
Special-purpose systems perform specific machine vision
analyses, such as, verifying the contents of a label on a
package. They are typically deployed on-site, e.g., at the
factory floor, for use by shop personnel during the manu-
facturing process.

Development machine vision systems, on the other hand,
typically comprise a collection of software “tools” that can
be arranged to perform many machine vision functions.
These systems may include, for example, software subrou-
tines for identifying the center of mass of an object or for
detecting the edge of an object. Development systems are
typically used by vision system manufacturers (e.g., OEM’s
and VAR’s) to develop special-purpose machine vision
systems for use by their customers.

A drawback of the special-purpose systems is their rela-
tive inflexibility. While they typically permit an operator to
specify limited information about an object to be inspected,
they cannot be adapted to provide new vision functions.
Thus, prior to a production run, an operator may input into
a special-purpose label verification system the content of
labels to be inspected. However, the operator could not
readily modify such a system, for example, to verify that a
one-time promotional coupon was affixed to the label.

Notwithstanding their added flexibility, a drawback of
traditional development systems is that they are difficult to
use. The software tools employed by the development
system must be selected and incorporated into a computer
program in order to perform useful vision analyses. This
typically requires solid computer programming skills and a
thorough knowledge of the vision analysis to be performed,
as well as familiarity with the computer hardware and
operating system on which that analysis will be run.

In view of the foregoing, an object of the invention is to
provide improved methods and apparatus for machine vision
and, more particularly, for programming digital data pro-
cessing systems for machine vision analysis of images.

Another object of the invention is to provide a system for
machine vision analysis with greater flexibility than con-
ventional special-purpose machine visions systems.

Still another object is to provide methods and apparatus
for machine vision analysis that are capable of handling a
wide variety of machine vision tasks and, yet, do not require
an in-depth knowledge of computer programming, nor of
computer hardware and operating systems.

Other general and more specific objects of this invention
will in part be obvious and evident from the description and
drawings which follow.

SUMMARY OF THE INVENTION

The aforementioned and other objects are achieved by the
invention which provides, in one aspect, an apparatus for
interactively generating a computer program for machine
vision analysis. The apparatus insures that the program is
correct by permitting the operator to make only syntactically
correct modifications to the program.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to this aspect, the apparatus includes an ele-
ment for storing the computer program being generated. A
further element, coupled to the program store, displays the
program to the operator. A positioning element demarks a
location of interest within the program. That location may be
at the end of the program, the beginning of the program, or
at any other point where the operator intends to make
modifications.

A menu element displays to the operator permissible
programming modifications for the location of interest. For
example, if the specified location is an entire if . . . then . .
. endif construct (e.g., a block of code beginning with an if
... then statement and ending with an endif statement), the
menu element may enable the DELETE function, thereby,
permitting the operator to strike the entire construct. On the
other hand, if the specified location is the single word endif,
the DELETE function is disabled, thereby preventing the
operator from invalidating the language construct.

An update element responds to the operator selection by
appropriately modifying the stored program.

According to another aspect of the invention, the menu
element displays, as permissible programming modifica-
tions, syntactically correct programming statements that the
operator may insert into the program. Continuing with the
example, if the specified location is within an if . . . then .

. endif construct, the menu element displays the else
statement, thereby permitting the operator to add the state-
ment to the program. If the specified location lies outside of
theif .. .then. .. endif construct, the menu element disables
the else statement, thereby preventing the operator from
impermissibly adding the statement at the specified location.

In a related aspect of the invention, the menu element
incorporates in its display of syntactically correct program-
ming statements, statements for machine vision analysis of
an object image. Those statement can be, for example,
subroutines or functions for invoking a machine vision tools
(e.g., for identifying the center of mass of an object or for
detecting the edge of an object in an image) that require
input parameters (e.g., for specifying the expected location
of the object).

To facilitate specification of those input parameters, an
imaging element can generate a candidate image of the
object upon which the machine vision analysis is to be rim.
In this regard, the operator can place within the field of view
of a camera, that is coupled to the imaging element, a sample
of the object which is to be analyzed. A graphical input
element displays over that candidate image a graphical icon
that the operator can manipulate to specify the parameters.

Continuing with the example, in order to facilitate speci-
fication of the expected location of an object, the graphical
input element can display a cross-hair or marquee box on the
candidate image. The operator can position (and size) that
icon so as to designate the expected location. The update
element modifies the stored program accordingly by sup-
plying that information (along with any other designated
input parameters) to the machine vision analysis tool, e.g.,
by way of parameters in a subroutine or function call.

In a related aspect, a textual input element can display an
icon prompting the operator to designate textually input
parameters for the machine vision tool. That icon can be, for
example, a “dialog” box.

The invention provides, in a still further related aspects, a
run-time element that executes the program and invokes the
selected machine vision analysis tool using the input param-
eters specified by the operator, e.g., via the text and graphical
inputs.

5,481,712

3

Other aspects of the invention include methods paralleling
the operation of the apparatus described above. These and
other aspects of the invention are evident in the drawings
and in the detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the invention may be
more fully understood from the following description, when
read together with the accompanying drawings in which:

FIG. 1 depicts a preferred embodiment of the interactive
programming environment of the present invention,

FIG. 2 depicts the operator interfacing system according
to a preferred embodiment of the invention; and

FIG. 3 depicts a schematic block diagram of a preferred
hardware system according to the invention.

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENT

FIG. 1 depicts the interactive programming system 10
according to a preferred embodiment of the invention. The
system 10 includes a menu 15, an update element 20, a
program storage element 25, a display element 30, and a
positioning element 35, connected as shown.

The program storage element 25 stores a computer pro-
gram created by a system operator in an intermediate
syntactically correct form, e.g., a parse tree. In a preferred
embodiment, the program storage element contains free
memory space specifically allocated for storing the com-
puter program.

The display element 30 graphically displays the computer
program to the system operator. Thus, the display 30
includes an element (not shown) for translating the parse
tree stored in the program storage element 25 into a human
readable text and, more preferably, into the format of a
high-level computer language, e.g., FORTRAN or C.

The position element 35 demarks the system operator’s
location within the computer program being generated. A
position icon, e.g., a I-bar, is generated by the position
element 35 to provide a visual aid in showing the position of
interest. Preferably, the operator specifies that position of
interest via an input device such as a keyboard, mouse or
trackball.

The menu element 15 graphically displays a list of
permissible programming modifications. The programming
modifications are syntactically correct—that is, they include
additions or deletions that insure that the program contains
proper language constructs. In a preferred embodiment, the
permissible programming modifications include permissible
additions, deletions and other modifications of the program.
The additions, themselves, include programming state-
ments, e.g., commands, declarations, subroutines and func-
tions and function calls. The preferred illustrated embodi-
ment is intended for use in generating computer programs
for machine vision analysis and, accordingly, specifically
includes programming statements, €.g., subroutine and func-
tion calls, for invoking machine vision tools. The menu 15
accepts responds to an operator’s selection of a modification
by generating a selection signal 19.

The update element 20, responds to the selection signal
19, by making the corresponding modification to the pro-
gram stored in the program storage element 25. Preferably,
as noted above, the program is stored in intermediate code
form and, accordingly, the update element includes an
intermediate code generator for generating the modified

10

20

25

30

35

45

50

55

60

65

4

program in a syntactically correct intermediate form.

FIG. 2 depicts a preferred system 205 according to the
invention for facilitating specification of input parameters to
machine vision analysis tool calls (i.e., function and sub-
routine calls). The system 205 includes a selection element
200, an input parameter element 204, an imaging element
250, a display element 260, and a operator input 266,
connected as shown. The input parameter element 204
includes a parameter selection element 206, a graphical
input element 212, a textual input element 220, and an
update program storage element 230, also connected as
shown,

The selection element 200 allows the system operator to
select a specific machine vision tool to be invoked by the
above generated computer program. The selected machine
vision tool preferably requires one or more input parameters,
e.g., image location.

The imaging element 250 generates a candidate image of
an object upon which a machine vision analysis tool is to
operate. The imaging element comprises any means for
generating a digital image of a operator inputted object. For
example, a typical digital imaging system includes a camera
with a selected field of view into which a candidate object
is inserted, and a digitizer which generates the digital object
image. The digitizer and camera assembly can be of con-
ventional construction and design and of a type that is
commonly available.

The input parameter selection 204 generates the input
parameters required by the selected machine vision tool. The
input element features several elements including the param-
eter selection element 206. The parameter selection element
206 determines the mode, either graphical or textual, in
which the input parameters are supplied to the selected
machine vision tool. Thus, when the input parameters are
amenable to specification in a a graphical input display
mode, the parameter selection element 206 obtains the
parameters graphically from the operator. And, when the
input parameters are amenable to specification in a textual
input display mode, the parameter selection element 206
obtains them textually. Those skilled in the art will, of
course, appreciate that most input parameters can be
obtained textually, while fewer are readily amenable to
graphical input.

The display element 260 displays the candidate image
generated by the imaging element 250. The operator input
element 266 communicates with the display element 260 for
obtaining the operator-specified input. The display element
and operator input element can be constructed from con-
ventional computer, monitor and input devices (e.g., key-
board, mouse or trackball). Preferably, those elements are
corresponding elements of the machine vision equipment
sold by the assignee hereof under the CHECKPOINT 2000,
CHECKPOINT 3000 and CHECKPOINT 4000 trademarks.

The graphical input element 212 responds to the graphical
input signal 208 to displays, in connection with the gener-
ated candidate image, a manipulable graphical icon. In a
preferred embodiment, the manipulable graphical icon is a
cross hair 214 and a marquee/box 216 though, of course,
other icons can readily be used. The system of the present
invention operates such that the designated graphical input
selection is superimposed over the candidate image dis-
played by the display clement 260. It is readily recognizable
by one of ordinary skill in the art that the graphical input
icons 214, 216 can be superimposed over a real-time can-
didate image or a stored candidate image. The display
element 260 displays the image over which the operator may

5,481,712

5
graphically write selected graphical data.

The textual input element 220 responds to the graphical
input signal 210 to displays a manipulable textual icon, e.g.,
a dialog box 222. The dialog box 222 allows the system
operator to textually specify the input parameters required
by the selected machine vision tool.

The graphical input element 212 and the textual input
element 220 are coupled to the update program element 230.
The update element 230 generates a program signal repre-
sentative of at least a portion of the computer program being
generated, particularly, that portion corresponding to invo-
cation of the selected machine tool and specification of input
parameters for that tool.

In operation, the computer program being generated by
the system operator, as illustrated in FIG. 1, typically
includes one or more programming statements containing a
call to a machine vision analysis tool. Typically, such a tools
requires specification of input parameters determining how
the tool is to conduct its analysis.

In order to facilitate specification of those parameters, a
candidate object image generated by the imaging element
250 is displayed on the display element 260. Once the
machine vision tool is selected, as defined via the tool signal
202, the parameter selection element 206 determines the
permissible mode(s) in which the input parameters can be
supplied.

When the input parameter is amenable to graphical input,
the graphical input element 212 superimposes a manipulable
graphical icon over the object image displayed by the
display element 260. The operator then specifies the neces-
sary parameters via the operator input element 266 by
manipulating the graphical icon.

By way of example, when the operator includes in the
program a call to the LINE FINDER machine vision tool
(for identifying the location of a line in an image), the
system 205 facilitates designation of a portion of image in
which that tool is to operate. For this purpose, the graphical
input element 212 superimposes a manipulable marquee/box
over the candidate image, thereby permitting the operator to
designate the region of interest. Similarly, the textual input
element 220 can be deployed to display a dialog box 222,
permitting the operator to enter the coordinates of the region
of interest.

Once the operator has specified the input parameters, the
update element 230 generates modifies the stored program to
include in the call to the requested machine vision tool, e.g.,
LINE FINDER, the designated input parameters.

FIG. 3 depicts the hardware system 310 according to a
preferred embodiment of the invention. A development
system 320 has an associated monitor 3 12, a keyboard 314,
and a pointer 316. Likewise, a Vision Processor 330 has an
associated monitor 322, a keyboard 324 and a pointer 326.
The system further includes a camera 336, a digitizer 332,
and connections to separate I/O devices and Automated
Equipment Control.

The Vision Processor 330 (VP) is preferably responsible
for the dedicated processing of the machine vision tool
software and factory floor automation control equipment.
The development system 320 (DP) is preferably responsible
for the application development interface and all activities
relating to design of the application. In a preferred embodi-
ment, the development system 320 communicates with the
Vision Processor 330 via data pathway 318. Preferably, the
Development System (DS) and is always assumed to have a
VP connected to it.

20

25

30

40

45

50

55

60

65

6

The Development System 320 is preferably a commonly
available PC running an MS Windows (version 3.1) oper-
ating system. The VP 330 can be any conventional com-
puter-controlled machine vision apparatus including
machine tools systems, such as systems sold by Allen-
Bradley and AISI (Applied Intelligent Systems, Inc.) A
preferred such system is that sold by the assignee hereof
under the tradenames CHECKPOINT 2000, CHECKPOINT
3000 and CHECKPOINT 4000.

Referring again to FIG. 3, the VP 330 has connections
338, 340 for interfacing to a camera, a monitor, external /O
devices, pointing devices, and discrete /O signals for con-
trol of automation equipment. The DS 320 encompasses the
interactive programming environment as illustrated in FIG.
1, and the VP 330 embodies the program operator interfac-
ing system depicted in FIG. 2.

The development system 320 includes the main comput-
ing entities, such as a programming panel and one or more
machine vision tool dialog boxes (not shown). The tool
dialogs contain information about the static state and ini-
tialization of the tools displayed in the VP 330. In a preferred
embodiment, the operator can double click vision tools on
the VP monitor 322 to allow operator access to these dialogs.
Initial or input parameters, such as the confusion threshold,
the score threshold, and the tolerance levels for a search
point can be adjusted via operator input. Access is imple-
mented with specialized import/export methods in the
classes for machine vision tools. Preferably each dialog is
customized to the a operator selected machine vision tool.
For example, the dialog for a light probe tool can display a
histogram of the light levels in its region of interest.

The DS 320 is preferably implemented in the Microsoft
Visnal Basic development environment. Basic module
libraries are capable of handling low level routines such as
serial communication, symbol table manipulation, expres-
sion parsing, file input-output, sexps, and event interfacing
with the VP 330.

The programming panel is the heart of the operator’s
application development. The panel displays a buffer of text
that shows the operator the result of his interaction with the
programming environment, together with one or more dis-
plays of variables which can be displayed by the monitor
312. Thus, when the operator selects a machine vision tool
(through a menu choice), the DS 320 sends a request via data
pathway 318 to the VP 330 for its creation, records the
information that results from that creation, and gives the tool
a default name so it can be listed in the variables display.
Alternatively, the development system 320 creates the
selected machine vision tool, records the information that
results from that selection and then transmits the generated
data along the data pathway 318 to the VP 330. The machine
vision tool name can then be edited and all displays are
automatically updated to show the new name of the tool. A
statement is inserted in the application that “runs” the tool.

The system 310 further allows the operator to control the
course of action of the application by reordering the state-
ments representing the run actions of the tools. The pro-
gramming panel displayed on the monitor 312 provides one
or more statements to enable the system operator to control
the above sequence of events and to extract runtime data
from the machine vision tool. In a preferred embodiment of
the invention, the programming statements include the fol-
lowing: call, calculate, set, if, elseif, else, while, for, break,
next, goto, label, define, call, and return. The system 310
further provides methods to decorate the various displays of
the application with operator provided information. This is

5,481,712

7

analogous to the role of comments in a traditional program-
ming language.

Invocation of the above-listed menu items results in the
generation of a dialog box for the operator to supply the
system with the required data. Typically, this dialog box is
a boilerplate for the fields necessary to complete the par-
ticular statement. The system will not insert an incorrectly
filled out dialog box, thereby, ensuring a syntactically cor-
rect operator inputted programming statement. Where
expressions are required in the displayed dialog box, they
are parsed for correctness before being inserted. Those of
ordinary skill will understand the internal processes invoked
by the system when executing the above functions.

The computer program being generated by the system
operator (as in FIG. 1) is represented internally as a tree of
balanced symbolic expressions. These symbolic expressions
(sexps) are quite similar to those found in computer program
languages, such as Lisp, and are preferably implemented as
a set of utility routines in the underlying BASIC language.
All machine code generation and representation display
relies on the sexps. The DS 320 stores the representation of
the application sequences in this “tree of sexps” form.

The programming panel supports traditional clipboard
activities, and allows a great deal of context support. For
example, if the operator has a selection in a variables
window, that name is available for pasting into the current
programming statement boilerplate.

The operator also interacts with the DS 320 by creating
objects that represent executable vision tools, while simul-
taneously manipulating the objects on the VP monitor 322.
Representations on the VP and DS monitors 312, 322 are
manipulable from a single pointing device, such as pointer
316 or pointer 326.

In a preferred embodiment, the machine vision tools
include machine vision analyses, geometric constructions
built from them, and/or antomation controls. Basic location
tools preferably include points located by a correlated
search, and points located by one dimensional signal analy-
sis. The operator evoked machine tool is super imposed
graphically over an acquired digital image. Measurements
performed on the digital image can be performed on selected
regions of interest, including light levels, histograms, etc.
Acquisition controls preferably include timing, synchroni-
cally control, light levels, etc. Operator interface tools can
cause particular functions to be executed.

The VP 330 displays via monitor 322 to the system
operator one or more graphical icons. These icons preferably
embody selected geometric constructions including, points,
lines, circles, gauges, and fixtures. Fixtures change the
coordinate system by which other machine vision tools are
measured. Geometric points are either fixed relative to those
fixtures, midpoints, or intersections between other construc-
tions. Lines can also be fixed, as represented by a connection
between two points, parallel or perpendicular constructions,
angle bisectors, or a result of a “best fit” calculation based
on a number of points. Circles can be constructed from other
geometric figures, or can be the result of a “best fit”
calculation. Gauges can measure differences in distance or
angle, within operator designated or closed loop tolerance
controls. :

The VP 330 preferably contains the implementations of
these tools within a unified event driven system that imple-
ments a familiar point and click interface to the operator. All
tools can be clicked, dragged, double clicked and otherwise
manipulated with a pointing device uniformly. The VP 330
system is preferably implemented in the C++ programming

20

25

30

35

45

50

55

60

65

8

language, taking advantage of its inheritance and object-
oriented language constructs to provide a clean interface to
all of the tools in the system. In a preferred embodiment, the
system 310 employs a Motorola 68040 CPU, and an acqui-
sition hardware of conventional construction and design
typically available as primitives.

A central event processing loop contained within the VP
330 dispatches events posted by sources in the system. A
source is modeled as a pollable device attached to the
system. All polling is done synchronously with a polymor-
phic interface. These dispatches, in ram, control the modal
properties of the operator interface and themselves rely on a
polymorphic interface to the vision tools to relay the actions
of the system operator and the operating environment.
Asynchronous events can be handled synchronously by
posting them to a waiting queue, and this interface is used
to handle discrete input-output transients and serial commu-
nication from the DS 320.

The machine vision tools describe the environment they
model in terms of geometric constructs. They preferably
exist in a selected coordinate system, and their representa-
tions are modeled with matrices, vectors, and coordinate
transform classes. Several classes support traditional data
structures programming: lists, hash tables, reference counted
pointers, strings, matrices and vectors, etc.

A further understanding of the illustrated embodiment
may be attained by reference to the following sections.

The VP Classes

Array :

The purpose of this document is to specify a set of classes
that implement data structures that are syntactically and
semantically equivalent, to the extent possible and reason-
able, to native C++ arrays, but with certain added features.
A variable can be declared that acts like a native pointer to
a particular type. The following example shows most of the
faimilar syntax and semantics of the new array class:

// compute a cumulative function

struct e { int x, cum;};

ccArray<e> a(100), p;

(*a).cum = (*a).x; /la-> is the same as (*a)., as usual

for (p = a + 1; p.indexOK(); ++p) // note pointer arithmetic
p->cum = p->X + p[~1].cum;

The new features are:

1) An array pointer can be uninitialized, can point to an
element of an array, or can point one beyond the last
element of an array.

2) Any pointer arithmetic that results in a value before the
beginning or more than one past the end of an array is
trapped. Any attempt to reference an element before the
beginning or past the end of an array is trapped. Note
that negative indicies may be OK, as in the above
example. Any attempt to use an uninitialized pointer is
trapped. :

3) Storage is managed automatically, so that when all
pointers to an array have been destroyed, the array is
destroyed.

4) Elements can be inserted and deleted. When an element
is inserted, the index of elements after the insertion
point increases by 1; when an element is deleted, the
index of elements after the deletion point decreases by
1. Existing array pointers to elements in an array, by

5,481,712

9

contrast, are unaffected by insertion and deletion
(except see #5) they still point to the same element.

5) When an element is deleted, any existing pointers to
that element are considered stale, and any attempt to
use them is trapped. A stale pointer can be reassigned
to a fresh value.

6) Arrays are polymorphic any of a variety of storage
management styles can be chosen when the array is
constructed to satisfy requirements such as zero storage
overhead, insert/delete speed, random access speed,
heap usage, and assembly language compatibility.
These styles are totally interchangable and invisible to
the non-assembly language array user.

7) Common array operations are very efficient. The opera-
tions *p, p—, and checking to see if a pointer has
reached the end of an array are nearly as fast as for
native arrays, for all array storage management styles.

2. Design Overview

Arrays are based on the handle/rep class style, but differ
sufficiently from the standard handle classes That they are
not derived from ccHandle<T> and ccHandleBase. The
handle class ccArray and the rep classes derived from the
abstract base cc__Array are template classes of one class
parameter, the data type that the array will hold. The rep
class is a friend of the handle class, but not the other way
around, so that implementation details are confined to the
rep class and not spread to the handle.

The handle class and the rep base class implement basic
functionality that is common to all array types (storage
management styles), and define a small number of pure
virtual functions for derived classes to override to plug in a
specific storage management style.

An array pointer (i.e. handle) can be in four states:
uninitialized, pointing to valid element, pointing 1 beyond
end, and stale. It is a central property of the design that
handles are compact and can be used efficiently but safely,
without unnecessary storage overhead for representing the
states and without excessive time spent testing the state.
Careful consideration was given to the act of iterating over
an array, where for each iteration one must: check for the
end, reference the current element one or more times, and
advance to the next element. It is important that each of these
three operations is safe in isolation, yet when used together
there is minimal redundent testing of state. In the specified
design, all of the real work is done when advancing to the
next element referencing and checking are simple inline
functions, yet still safe. Finally, note that these properties
must hold in spite of insertion and deletion operations, and
for almost any conceivable storage management style.

The handle class is derived from ccUnwind and contains
a pointer to the rep class, a pointer to an element of the array,
and a link pointer so that handles can be put on lists—handle
is 20 bytes and the constructors are terse. The rep class
pointer is always valid and is never tested—for uninitialized
handles, the pointer is not null but points to a static instance
of a rep class where all of the virtual functions are overrid-
den to throw an error. The element pointer either points to a
valid element of the array or is null—this makes the refer-
encing operations *p and p—», and checking for valid
pointer, fast. A null element pointer could mean either
pointing 1 beyond the end or stale—the state is implied by
which list the handle is on, as described below.

All existing handles for a given rep class are chained
together on one of two lists maintained by the rep class, one
for fresh handles and one for stale. The lists serve several
purposes:

1) To distinguish stale handles from end-pointing ones,

with zero space and testing time overhead.

5

20

25

30

35

40

45

50

55

60

65

10

2) To determine when the rep class can be destroyed (both
lists are empty).

3) To find handles that must be made stale as the result of
a delete operation.

4) To allow certain storage management schemes to find
and update handles if insertion or deletion operations
cause element addresses to change.

Note that clients of ccArray can obtain the actual address
of array elements using either &*p or &p[i]. This is dan-
gerous, because none of the bounds checking, stale check-
ing, relocation adjustment, and storage management opera-
tions apply to native pointers. We could prevent clients from
obtaining raw addresses by specifying a different syntax and
semantics, but the cost, complexity, and inconvenience seem
excessive. Furthermore, it is clear that real-world engineer-
ing considerations will occasionally require us to use the raw
addresses, presumably under carefully constrained circum-
stances that include knowledge of the storage management
scheme in use. Thus we do not forbid clients to obtain a raw
address, but we do discourage it.

3. Detailed Design

ccArray

ccArray<T> is a custom handle class. No derivation from
ccHandle is needed since it’s functionality is embedded in
ccArray. ccArray contains a pointer to the rep class to use.
This pointer is always valid. An uninitialized pointer is one
that points to a class called cc_ UninitArray. All member
functions throw an uninitialized error. In contrast, ccHandle
performs a check everytime an access to the handle is made.

ccArray has the element of a starting element which does
NOT have to be the first element in the buffer. Negative
indices are used to access elements which are before the
starting element.

If an element is removed from the list that another handle
is pointing to, that class is removed from the handleList and
placed on the staleList. The rep class keeps track of which
handle classes are accessing data for a couple of reasons.
The first is to check that valid accesses are being made. A
null pointer indicates a problem with the handle. If the
handle is on the stale list, the error occurred because the
class pointed to an item that is no longer on the list. The
second reason is that some implementations of the rep class
may have to dynamically relocate data. For example, the gap
array may move elements around to optimize the process of
inserting new elements. When blocks are moved, the han-
dleList is examined to see if any handles are pointing to an
affected element. These pointers are corrected to point to
their new location.

The primary member functions are:
ccArray (type, size)

Constructs an array of the specified type and size. Current
choices are:

ccArray (ccArrayType::fixedArray, size)

Creates a fixed array of indicated size. Array elements
are not initialized.

ccArray (ccArrayType::byteGapArray, size)

Creates a gap array of the indicated size. Byte copying
is used to move elements in the buffer. .

ccArray (ccArrayType::ctorGapArray, size)

Creates a gap array of the indicated size. A constructor
(using placement syntax) is used to move elements in
the buffer.

int index ()

Returns the index of the current element relative to the
starting element in the buffer. The starting element is mearly
a pointer to any element. Negative indices can result if the
starting element is not the first element.

5,481,712

1

int indexOK ()

Returns true if the current element is valid.
int indexOK (int index)

Returns true if the indicated index is valid. The index is
relative to the starting element.
void indexCheck ()

Checks the current element for validity and throws an
error if it isn’t. The error can either be stale or bounds error.
void indexCheck (int index)

Checks the specified index for validity. A bounds error is
thrown if the index is not valid.
ccArray<T> first ()

Returns a new handle whose current element is the first
one on the list.
ccArray<T>end ()

Returns a new handle whose current element is one past
the last one on the list. This is used primarily to insert new
items at the end of the list (insertions always are made in
front of the current element).

T& operator [] (int index)

Returns a reference to indicated element. A bounds error
is thrown if the index is invalid.
T& operator * ()

Returns a reference to the current element and throws
either a bounds or stale error if the current element is invalid.
ccArray operator+(int index)
ccArray operator—(int index)

Returns a new handle whose current element is relative to
the original one by the specified amount. A bounds error is
thown if the new element is invalid.
ccArray& operator+=(int index)
ccArray& operator—=(int index)

Moves the location of the current element by the relative
index, bounds error is thown if the new element is invalid.
ccArmray& operator++()
ccArray& operator—()
ccArray operator++(int)
ccArray operator—(int)

Pre and Post increment/decrement the current element.
Pre decrement/increment returns a new handle. A bounds
error is thown if the new element is invalid;
ccArray insert ()

Insert a new element in front of the current element. The
new element remains uninitialized, An unimplemented error
is thown if the array type does not allow insertions.
ccArray insert (const T&)

Insert the specified element in front of the current ele-
ment. The new element remains uninitialized, An unimple-
mented error is thown if the array type does not allow
insertions.
ccArray& remove ()

Remove the current element from the array. A bounds or
stale error is thown if the element is invalid. Otherwise it is
removed from the list and all other handles that currently
point the element are moved to the staleList.
ccObjArray

ccObjArray<T> is identical to ccArray (it’s derived from
it) except the addition of a single member function. The
“—>*" operator is defined to allow direct access to elements
of the objects in the array. It’s pretty easy to decide when
ccArray or ccObjArray should be used. Basic types such as
int’s and float’s must use ccArray since the — syntax has no
meaning (besides, the compiler will generate an error during
the instantiation). Arrays of objects or structs can use either
one but it’s better if they use ccObjArray to avoid the need
to someday change it.

T* operator — ()

10

15

20

25

30

35

40

45

50

55

60

65

12

Returns a pointer to the current element so that access to
one of its elements can be made.
cc__Array

cc__Array<T> is the rep base class. Only the handle class
can access its member functions. cc__Array is virtual and
requires a derived class to define at least five functions. Four
other functions are optional and are defined either to get
functionality or efficiency.

cc__Array owns the linked lists for handleList and stalel.-
ist (The linked lists are used because they’re simple and
efficient). Any handle class that references the array has an
entry on one of these lists. An entry can only get on the
staleList if the current element that it points to is no longer
on the list.

The virtual functions that must be defined by all derived
classes are:

T* lookup (T* base, int index)

Returns a pointer to the element at the specified index
relative to the specified base. A bounds error should be
thrown if the requested element is not in the array. O is
returned if the element points to one past the end of the list.
This state is not an error condition.
int index (T* base, T* rel)

Computes the index of the item relative to the specified
base element.

T* insert (T* beforeHere)

Inserts a new element before the specified one. A bounds
error is thown if the specified element is invalid. The
behavior when the list is full or no insertions are allowed is
application specific. See the derived classes for specifics.
T* insert (T* beforeHere, const T& value)

Inserts the specified element before the specified one. The
same requirements lists above still apply.

T#* remove (T* thisOne)

Remove the specified element from the array. The handle
cl ass insures that the element is on the list.

Other virtual functions that can be overridden:

T* access (T* base, int index)

Exactly like lookup except that a bounds error is thrown
if the element is one past the end of the array. access() is used
instead of lookup() when data must be retrieved.
int indexOK (T* base, int index)

Returns 1 if the current index relative to the specified base
is valid, otherwise a O is returned. It’s implemented by
setting up a catch handler and executing the lookup function.
It’s best to override this if possible.
ccArray compress ()

Compress the current array. The default behavior is to
return a new handle to the current array. Some derived
classes like the gap array override this to return a new array
with all the unused space removed.
cc__UninitArray

Derived from cc_Array. All the virtual functions in
cc__Array are defined to throw an uninitialized error. Cre-
ating a ccArray of no specific type creates a handle which
points to a static instance of cc_ UninitArray.
cc_FixedArray

cc__FixedArray<T> implements a fixed array. Once con-
structed, elements cannot be inserted or removed or else an
unimplemented error is thrown. Construction is of the form:

ccArray (ccArrayType::fixedArray, size)
where size if the size of the array.
cc__GapArray

5,481,712

13
cc__GapArray<T> implements a gap array. Elements can
be inserted and removed but the emphasis is placed on
insertion. The buffer space allocated to the array looks like:

_first —end
| T O T A | I B
_mark —.point
_first The beginning of the array buffer

..end The address just past the end of the array buffer
—mark The first address of the gap
_point The address of the first element after the gap. All
insertions are made in front of the _point
(ie: at the _mark).

Construction is of the form:

ccArray (ccArrayType::byteGapArray, size) Elements of
a byteGapArray are copied internally using cu__copy. A
range of elements can be moved using a single call.

ccArray (ccArrayType::ctorGapArray, size)

Elements of a ctorGapArray are moved using a copy
constructor with placement syntax. Movement is much
slower because elements must be moved one at a time. The
destructor is explicity called after the element has been
moved. If you see this part of the code commented out it’s
because of a Cfront bug because the dtor call is inside a
template.

The byte and ctor variations are implemented as a single
class because most operations are identical. I didn’t see the
benefit of implementing them as separate classes that derive
from a common base class.

Insertion:

Insertions can be done at very high speed. The basic steps
are:

If the insertion point is not the _point, move the records
so that it is. The handles in the handleList are scanned
to see if any of them point to an element that was
relocated and corrects for it if it is. For multiple
insertions at the same point, this overhead occurs only
for the first insertion.

The new element is copied into the buffer at _ mark.

_mark is incremented to point to the next available
location.
Remove:
Removals of neighbors lower in the list can be done at
high speed.
The basic steps are:
If the item to be removed is not at _point, move elements
in the buffer until it is. This step is identical to the first
step of insert.

Remove the element at __point by incrementing _ point. A
ctorcopy array will call the destructor first (assuming
the Cfront 3.0 bug gets fixed).

A list that is full is indicated by the _mark and _ point

being equal.

The compress() function removes any unused space by
creating a new ccArray of a size that will just hold the
elements and then copies them from the old array to the new
one.

Exceptions
Exception Handling in the Cognex Vision Class Library
(VCL)

10

20

25

30

35

40

45

50

55

60

65

14

1. Client Usage

The exception handling system in the VCL is the key to
what we can consider to be “safe” programming, The VCL
uses this library based scheme, at least until implementa-
tions of the ANSI proposed mechanism are available. This
implementation uses a minimum of intrusion on the devel-
oper of VCL classes and provides stack unwinding, includ-
ing frames from inside partially constructed objects.

Stack unwinding is the correct destruction of automatic
and temporary (on the stack) objects in reverse order of the
scopes they have been destroyed in. For built in types
(double, int, et. al.) and objects without a destructor, this is
a null operation. For objects with a destructor, this means
invoking it, just as if control flow had left its enclosing
block.

EXAMPLE

b
ccSignal Xalloc = “Exception Signal to be handled”;
int bar () { Xalloc.Throw (); }

int foo ()
{
X blue;
bar ();
X red;
int main ()

{
cmCatch (Xalloc, xsignal);
if (xsignal)
cout << “Xalloc signal caught” << endl;
clse

foo ();
cout << “No signal caught” << endl;
}

cout << “Exit program” << end

In the example, the class X has a destructor. Automatic
objects of type X will need to be destroyed correctly when
the stack is “unwound” past them. An exception to be caught
is declared. The type of an exception in the VCL is ccSignal.
Exceptions are also called signals, but should not be con-
fused with asynchronous signals (interrupts) from the ANSI
C library. Only static objects of class ccSignal may be
declared and the constructor takes a char* argument which
represents a string to print in error conditions.

A function that throws this signal, int bar (), is defined.
The syntax of the throw in the VCL system is used. This is
slightly different than the ANSI syntax. Note that “throw” is
a C++ keyword even now, so we use a member function of
ccSignal named “Throw”.

“int foo () is a function that creates some automatics and
calls a function. Function foo has no idea that an exception
may be thrown and doesn’t know what to do with any signal
thrown (it has no catch handlers).

The main function declares a catch handler. This is a
declaration of intent to stop the stack unwinding and deal
with the error in some way. The first argument is the signal
to catch, the second behaves like a declared pointer to
ccSignal. If it is null, no exception has been caught. Other-
wise, it points to the exception caught. The _if _ statement
represents the “try block” and the “catch clause”. The syntax

5,481,712

15

of catch clauses and try blocks in our system is different
from the ANSI syntax, but the functionality is similar.

A try block is a group of statements that might throw an
exception that you would like to handle. A catch clause is
what you will do once you catch such an expression.

The example starts the program in main and sets up a
catch handler. The catch handler implicitly declares a pointer
to ccSignal named xsignal. The catch clause is the true
branch of the if statement and the try block is the false
branch. The try block calls foo (). If foo returns, it will print
“No signal caught”. The function foo creates an X named
blue and calls bar. Bar throws Xalloc. At the point of the
throw the stack looks like this:

-int main ()-
local: xsignal
Catch handler for Xatioc
-int foo ()-
local: blue
-int bar ()-
throw point of Xalloc

The X named red has not been constructed. Stack unwind-
ing begins, and we go up out of bar into the frame of foo. The
X named blue is destructed, but the X name red is not
(correctly so). We pass up out of foo and encounter the catch
handler for Xalloc. Stack unwinding is over and control
passes to the beginning of the catch clause. The catch clause
prints “Xalloc signal caught” and main continues. The
message “Exit program” is printed and with the exit from
main, the program halts.

One important distinction between this implementation
and the ANSI specification is that the scope and lifetime of
catch handlers are not limited to the try block itself. The
catch handler is still active after the try block and in fact has
the same lifetime as a local variable declared in the scope in
which the cmCatch appears.

int main ()
{
emCatch (Xalloc, xsignal);
if (xsignal)
cout << “Xalloc signal caught” << endl;
else

{
foo ();
cout << “No signal caught” << endi;

cout << “Exit program” << endl;
foo (); /I Call foo here also

Let us change the given example slightly. If we add a call
the function foo after the print of “Exit program”, we get a
different behaviour. The program will execute as before until
we call foo for the second time. This will eventually throw
Xalloc. The catch handler for Xalloc is still active (until the
right brace that closes int main ()) and so the exception is
caught. The caich clause is executed and execution contin-

10

15

20

25

30

35

40

45

50

55

16

ues exactly as before after the end of the if-else blocks. “Exit
program” is printed again, foo is called again, and the
program loops infinitely.

Signals may be grouped in a runtime structure to indicate
families of exceptions to be caught. By convention, all
signals are defined to be descendants of ccSignal::all. New
types of signals can be derived from ccSignal. Commonly,
new signal types will carry specific information about the
event that caused the throw to occur. Examples of both of
these in the VCL can be found in cc2Vector.

ccSignal contains two member functions to throw an
exception: void Throw () and void error (). Both will print
diagnostic information if there is no active catch handler for
the signal thrown. If the catch for the signal is a “catch all”
or “cmCatch (ccSignal::all, x)” and the exception is thrown
with the error method, diagnostics will also be printed. The
member function const char* name () retrieves the string
used in construction, the function message will print this
name on the ostream. Signals derived from ccSignal often
redefine message to print other event specific information.

The C++ automatic storage class for objects is the lan-
guage mechanism that is used for implementing the catch
handlers. Catch handlers “behind the scenes” create an
object on the stack that registers the type of exceptions that
will be caught at that point. For simple use, and those usages
that similarly conform to the examples given here, the
mechanism provides an easy way to specify handlers. Be
aware, however, that much mischief is possible. Catch
handlers are legal anywhere that multiple declarations are,
and have lifetimes and scopes corresponding to objects
declared at__ that point. Pathological examples abound.

Example 1

ccSignal Xalloc_in_strings (“No storage for strings”, Xalloc);
int foo (void)

{
cmCatch (Xalloc_in_strings, sxsignal);
cmCatch (Xalloc, xsignal);
if (sxsignal)
// Never reached, Xalloc catch supersedes this catch.
}

Example 2

int foo (void)

{
for (cmCatch (Xalloc, xsignal); ; x = x->next())
/I cmCatch is a declaration, so should be legal, right?
// It’s actually implemented with two declarations, so this is
/1 illegal.
}

Example 3

int foo (void)

cmCatch (Xalloc, x1signal);
A: if (x1signal)

