a2 United States Patent
Slaughter et al.

US006421787B1
(10) Patent No.: US 6,421,787 B1
45) Date of Patent: Jul. 16, 2002

(54) HIGHLY AVAILABLE CLUSTER MESSAGE
PASSING FACILITY
(75) Inventors: Gregory L. Slaughter, Palo Alto, CA
(US); Robert Herndon, Colorado
Springs, CO (US)
(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 09/076,274
(22) Filed: May 12, 1998
(51) Int. CL7 oo, GO6F 11/00
(52) US.ClL .o, 714/4; 714/11
(58) Field of Search 714/4, 5, 7, 8,
71472, 25, 27, 31, 32, 39, 43, 44, 770,
769, 9, 10, 11, 13; 711/202, 114; 709/216,
223, 219; 707/1, 10
(56) References Cited
U.S. PATENT DOCUMENTS
4,800,488 A * 1/1989 Agrawal et al. 364/200
5,084,816 A * 1/1992 Boese et al. 395/575
5,438,508 A 8/1995 Wymanc..ccceeeeen. 364/401
5.475,813 A 12/1995 Cieslak et al. 395/182.02
5,634,096 A * 5/1997 Baylor et al. 395/182.04
5,666,486 A 9/1997 Alfieri et al. 395/200.47
5,668,943 A * 9/1997 Attanasio et al. 395/182.05
5,734,909 A * 3/1998 Bennettc.coceevnen.n. 395/726
5,754,829 A * 5/1998 Motohiro et al. 395/500
5,778,168 A * 7/1998 Fullerc......o. 395/182.16

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP 0 709 779 5/1996
OTHER PUBLICATIONS

Shared Virtual Disk for a Cluster of Processors with Sepa-
rate I/O Devices and Shared Memeory, IBM Technical

Disclosure Bulletin, vol. 36, No. 06B, Jun. 1993, pp.
375-377.

High Availability Cluster Multi—Processing 4.1 for AIX,
HANFS for AIX Installation and Administration Guide,
First Edition (Dec. 1995), Copyright International Business

Machine Corporation 1995., pp. 5-1—5-10, 9-1—9-10 (14
pages).

“ric1094,” Sun Microsystems, Inc., http://www.cis.0-
hio—state.edu/htbin/rfc/rfc1094 . html, 10/29/98 3:18 PM.

“Proceedings of the Winter 1991 USENIX Conference,”
USENIX Association, Jan. 21—1Jan. 25, 1991 Dallas, Texas,
USA, (8 pages).

Primary Examiner—Nadeem Igbal
(74) Attorney, Agent, or Firm—Conley, Rose & Tayon, PC;
B. Noél Kivlin

(57) ABSTRACT

A cluster implements a virtual disk system that provides
cach node of the cluster access to each storage device of the
cluster. The virtual disk system provides high availability
such that a storage device may be accessed and data access
requests are reliably completed even 1n the presence of a
failure. To ensure consistent mapping and file permission
data among the nodes, data are stored in a highly available
cluster database. Because the cluster database provides
consistent data to the nodes even 1n the presence of a failure,
cach node will have consistent mapping and file permission
data. A cluster transport interface 1s provided that establishes
links between the nodes and manages the links. Messages
received by the cluster transports interface are conveyed to
the destination node via one or more links. The configuration
of a cluster may be modified during operation. Prior to
modifying the configuration, a reconfiguration procedure
suspends data access requests and waits for pending data
access requests to complete. The reconfiguration 1s per-
formed and the mapping 1s modified to reflect the new
confliguration. The node then updates the internal represen-
tation of the mapping and resumes 1ssuing data access
requests.

39 Claims, 13 Drawing Sheets

102~ 100
104A 104B 104C
vi | 105A vz | 105B V3 | 105C
106A 106B 106C
VD1 | | vD2 | | VD3 vD1 | | vD2 | | vD3 vD1 | | vD2 | | vD3
I
<> G e G
D1 D2 D3
108 110 112

US 6,421,787 Bl

Page 2

U.S. PATENT DOCUMENTS 5,996,087 A * 11/1999 Badovinatz et al. 714/4
5,999,712 A * 12/1999 Moiin et al. 395/200.5
5,805,785 A * 9/1998 Dias et al. 395/182.02 6,009,455 A * 12/1999 Doyle ...ccovevnvennnnnnn.. 709/201
5,809,285 A * 9/1998 Hillandcevvveneen... 395/500 6,058,426 A * 5/2000 Godwin et al. 709/229
5,8157649 A ES 9/1998 Utter et al. 395/112004 6,067,545 A : 5/2000 WOlff 707/10
5,828,876 A 10/1998 FlSh et al. 395/601 6,078,990 A 6/2000 Frazier ...ooovvevnnvvvvnnnn... 711/114

5,964,886 A * 10/1999 Slaughter et al. 714/4 * cited by examiner

US 6,421,787 Bl

Sheet 1 of 13

Jul. 16, 2002

U.S. Patent

CAAN |

0901

43
ed

| Ol

_ QG601 AN g

Or01l

CaAn | | LAA _

001

—
I

US 6,421,787 Bl

Sheet 2 of 13

Jul. 16, 2002

U.S. Patent

chl
£d

3501 | m>_

o]

D901}

¢ 9Ol

OL1
¢l

801

1d

9]40)°8

002 _ —

US 6,421,787 Bl

Sheet 3 of 13

Jul. 16, 2002

U.S. Patent

40INA3A MSId OL

—

i BERETREY

_ d3AI-EA ASIdA

d9ct —

_ a8z¢ |

| 1HOdSNYHL
AN MHYOMLAN
—
_ _ asL¢ azz¢
aN _ 11D |
i) M
I
_ - _|||I<||n
| avlLe g91¢ _
AdanN aiLo

" e

dv0l

€ Ola 30IA3A MSIA OL
a SENENR
VoZe
ZL1 Ve _ HIAINA MSIA |
1LOANNODYILNI ND9D
_ - —
V8ZE ﬁ —
1HOdSNYYL V0ZE
MHOMLIN AIN
| veee V8lE
11D | an _
VOLE VYL vZle

IN3ITO

=

b

O
|

-

O

<

volLE |
NIND
vrol - ¥3sn |

US 6,421,787 Bl

v Old _
O14NOD
SERINE(e
- N3dO
E v8L€ AN
3 _
= VilE VyLe VZlLe
N aso aan LN3IT0
€
VoL€E
NIND

U.S. Patent

U.S. Patent Jul. 16, 2002 Sheet 5 of 13 US 6,421,787 Bl

310A

CCD
311A

NETWORK
TRANSPORT

CTl

S22A 328A

FIG. 5

U.S. Patent

L_IN

INITIALIZE CTI

ITIALIZE ND
612

|

B

614

Jul. 16, 2002

Sheet 6 of 13

US 6,421,787 Bl

‘4__: [

ND RECEIVES DATA

I_ ND STORES DATA
ACCESS REQUEST
617

1S
DEVICE

PHYSICALLY
CONNECTED TO
NODE?
618

SELECT NODE
622

ACCESS REQUEST
| 616

|

#

PERFORM
REQUESTED
ACCESS

| 620 ___I

—P

SELECT

| ALTERNATE
NODE
| __l 642

CONVEY DATA
ACCESS REQUEST
TO SELECTED
NODE VIA CTI

624

N

B

WAIT FOR
RESP
638

L

NO

s —

FIG. 6A

U.S. Patent Jul. 16, 2002 Sheet 7 of 13 US 6,421,787 Bl

T

CTI SELECTS LINKS TO

TRANSFER DATA TO
SELECTED NODE

626

CTI CONVEYS DATA ACCESS
REQUEST TO SELECTED
NODE VIA SELECTED LINKS
628

——

CTI OF DESTINATION NODE
RECEIVES DATA ACCESS
REQUEST AND DETERMINES
DESTINATION CLIENT
630

ND RECEIVES DATA ACCESS

REQUEST AND ACCESSES
STORAGE DEVICE
632

l RETURN DATA AND \
RESPONSE TO REQUESTING

NODE
634

|]

FIG. 6B

U.S. Patent

612

Jul. 16, 2002 Sheet 8 of 13

NDD Queries ND for
Devices to Open
712

Device
to Open?
714

Yes

B
NDD Queries CCD for

Device Configuration Data

716
I—

b

NDD Queries CMM for
Membership Data

718

NDD Conveys Configuration

and Membership Data to ND
720

. |
ND Updates Mapping Data

and Configuration Number

722
]

ND Notifies Client that
Device is Open
724

No

US 6,421,787 Bl

FIG. 7

U.S. Patent

614

Jul. 16, 2002 Sheet 9 of 13

Receive Indication of

Configuration Change
812

CTID Queries CCD for
Connection Data
814

CTID Queries CMM for
Membership Data
816

| CTID Establishes Links |

Over Connections
818

CTID Conveys
Connection ana

Membership Data to CTI
820

FIG. 8

US 6,421,787 Bl

US 6,421,787 Bl

Sheet 10 of 13

Jul. 16, 2002

U.S. Patent

4/1 IN3ITDO

4/ IN3I'1O

R

JCCt
110

| _ H¥16
WOO

dclb
dl/dOl

JCL6

dl/dOl

OvL6
WOO

dv16
WOO

WOO

B~
aolLe

916

d916

avrie

WNOO

0)4%¢
NOO

arl6

NOD

VvL6
WOO

VCl6
dl/dOL

Vict
1LO

/1 INJIO

US 6,421,787 Bl

Sheet 11 of 13

Jul. 16, 2002

U.S. Patent

¥c0l

opu
Gpu

cpu’
cphu
L pu’

LC-Cl
9¢-tl
€l-91
LC-Cl

6861
ot-11
LG-L]
ve.-9l

¢cOl

Ol DlId

MM MOM

9¢

~ o

dag
doeg
dag
dag
Ae
dag

deg

espb
esjib
espb
esjib
eJsib
esjb
J00.
esjib

8l01

9101

gSl
S
gsi
6S.
gsi
6S.
100
gSl

X-1X-IXMJP
X--X--XMJP

¢lOl

U.S. Patent

Jul. 16, 2002 Sheet 12 of 13

STORE DEVICE DATA TO
DATABASE
1112

A FIRST NODE OPENS A

DEVICE AND ACCESSES
PERMISSION FROM
DATABASE

1114
: |

THE FIRST NODE CREATES A |
SPECIAL DEVICE FILE

INCLUDING THE
PERMISSION DATA
1115

A SECOND NODE OPENS A
DEVICE AND ACCESSES
PERMISSION DATA FROM
DATABASE
1116

THE SECOND NODE
CREATES A SPECIAL DEVICE
FILE INCLUDING THE

PERMISSION DATA
1117

FIG. 11

US 6,421,787 Bl

U.S. Patent Jul. 16, 2002 Sheet 13 of 13 US 6,421,787 Bl

Output An Indication To Nodes That An Update Is Pending
1212

Nodes Suspends Data Requests To Storage Devices
1214

Nodes Wait For Outstanding Data Requests To Complete

1216 _l

Nodes Invalidate An Internal Representation Of A Mapping

1218
— j I 1
Nodes Output Acknowledge Signals To A Database I

l 1220

| Database Updates Mapping

1224

I — ____._]____._ -

Database Outputs An Indication That Update Is Complete
1226

I R

Nodes Request An Updated Version Of Mapping From Database
' 1228

Nodes Resume Sending Data Requests To The Storage Devices
1230

FIG. 12

US 6,421,787 Bl

1

HIGHLY AVAILABLE CLUSTER MESSAGE
PASSING FACILITY

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of distributed computing,
systems and, more particularly, to distributed virtual storage
devices.

2. Description of the Related Art

Distributed computing systems, such as clusters, may
include two or more nodes, which may be employed to
perform a computing task. Generally speaking, a node 1s a
oroup of circuitry designed to perform one or more com-
puting tasks. A node may include one or more processors, a
memory and interface circuitry. Generally speaking, a clus-
ter 1s a group of two or more nodes that have the capability
of exchanging data between nodes. A particular computing
task may be performed upon one node, while other nodes
perform unrelated computing tasks. Alternatively, compo-
nents of a particular computing task may be distributed
among the nodes to decrease the time required perform the
computing task as a whole. Generally speaking, a processor
1s a device configured to perform an operation upon one
more operands to produce a result. The operations may be
performed 1n response to instructions executed by the pro-
CESSOT.

Nodes within a cluster may have one or more storage
devices coupled to the nodes. Generally speaking, a storage
device 1s a persistent device capable of storing large amounts
of data. For example, a storage device may be a magnetic
storage device such as a disk device, or optical storage
device such as a compact disc device. Although a disk
device 1s only one example of a storage device, the term
“disk” may be used interchangeably with “storage device”
throughout this specification. Nodes physically connected to
a storage device may access the storage device directly. A
storage device may be physically connected to one or more
nodes of a cluster, but the storage device may not be
physically connected to all the nodes of a cluster. The nodes
which are not physically connected to a storage device may
not access that storage device directly. In some clusters, a
node not physically connected to a storage device may
indirectly access the storage device via a data communica-
tion link connecting the nodes.

It may be advantageous to allow a node to access any
storage device within a cluster as if the storage device 1s
physically connected to the node. For example, some
applications, such as the Oracle Parallel Server, may require
all storage devices 1n a cluster to be accessed via normal
storage device semantics, €.g., Unix device semantics. The
storage devices that are not physically connected to a node,
but which appear to be physically connected to a node, are
called virtual devices, or virtual disks. Generally speaking,
a distributed virtual disk system 1s a software program
operating on two or more nodes which provides an interface
between a client and one or more storage devices, and
presents the appearance that the one or more storage devices
are directly connected to the nodes. Generally speaking, a
client 1s a program or subroutine that accesses a program to
initiate an action. A client may be an application program or
an operating system subroutine.

Unfortunately, conventional virtual disk systems do not
cuarantee a consistent virtual disk mapping. Generally
speaking, a storage device mapping 1dentifies to which
nodes a storage device 1s physically connected and which
disk device on those nodes corresponds to the storage

10

15

20

25

30

35

40

45

50

55

60

65

2

device. The node and disk device that map a virtual device
to a storage device may be referred to as a node/disk pair.
The virtual device mapping may also contain permissions
and other information. It 1s desirable that the mapping is
persistent 1n the event of failures, such as a node failure. A
node 1s physically connected to a device 1if 1t can commu-
nicate with the device without the assistance of other nodes.

A cluster may implement a volume manager. A volume
manager 1s a tool for managing the storage resources of the
cluster. For example, a volume manager may mirror two
storage devices to create one highly available volume. In
another embodiment, a volume manager may implement
striping, which 1s storing portions of files across multiple
storage devices. Conventional virtual disk systems cannot
support a volume manager layered either above or below the
storage devices.

Other desirable features include high availability of data
access requests such that data access requests are reliably
performed 1n the presence of failures, such as a node failure
or a storage device path failure. Generally speaking, a
storage device path 1s a direct connection from a node to a
storage device. Generally speaking, a data access request 1s
a request to a storage device to read or write data.

In a virtual disk system, multiple nodes may have repre-
sentations of a storage device. Unfortunately, conventional
systems do not provide a reliable means of ensuring that the
representations on each node have consistent permission
data. Generally speaking, permission data identify which
users have permission to access devices, directories or files.
Permissions may include read permission, write permission
Or execute permission.

Still further, 1t 1s desirable to have the capability of adding
or removing nodes from a cluster or to change the connec-
tion of existing nodes to storage devices while the cluster 1s
operating. This capability 1s particularly important in clus-
ters used 1n critical applications 1n which the cluster cannot
be brought down. This capability allows physical resources
(such as nodes and storage devices) to be added to the
system, or repair and replacement to be accomplished with-
out compromising data access requests within the cluster.

SUMMARY OF THE INVENTION

The problems outlined above are in large part solved by
a highly available virtual disk system 1n accordance with the
present invention. In one embodiment, the highly available
virtual disk system provides an interface between each
storage device and each node 1n the cluster. From the node’s
perspective, it appears that each storage device 1s physically
connected to the node. If a node 1s physically connected to
a storage device, the virtual disk system directly accesses the
storage device. Alternatively, 1f the node 1s not physically
connected to a storage device, the virtual disk system
accesses the storage device through another node in the
cluster that 1s physically connected to the storage device. In
onc embodiment, the nodes communicate through a data
communication link. Whether a storage device 1s directly
accessed or accessed via another node is transparent to the
client accessing the storage device.

In one embodiment, the nodes store a mapping of virtual
disks to storage devices. For example, each active node may
store a mapping 1dentifying a primary node/disk pair and a
secondary node/disk pair for each virtual device. Each
node/disk pair identifies a node physically coupled to the
storage device and a disk device on that node that corre-
sponds to the storage device. The secondary node/disk pair
may also be referred to as an alternate node/disk pair. If the

US 6,421,787 Bl

3

node 1s unable to access a storage device via the primary
node/disk pair, the node may retry the data access request via
the secondary node/disk pair. To maintain a consistent
mapping between the nodes 1n the presence of failures, the
mapping may be stored in a highly available database.
Because the highly available database maintains one con-
sistent copy of data even 1n the presence of a failure, each
node that queries the highly available database will get the
same mapping. The highly available database may also be
used to store permission data to control access to virtual
devices. Because the highly available database maintains
one consistent copy of permission data even 1n the presence
of a failure, each node that queries the database will get the
same permission data.

One feature of a virtual disk system in accordance with
the present mnvention 1s the high availability of the system.
In one embodiment, the virtual disk system stores all of the
data access requests it receives and retries those requests it
an error occurs. For example, the virtual disk system of a
node that initiates a data access request, called a requesting
node, may store all outstanding data requests. If the desti-
nation node, 1.¢. the node to which the data access request 1s
directed, 1s unable to complete the data access request, an
error 1ndication may be returned to the requesting node and
the requesting node may resend the data access request to an
alternate node that 1s connected to the storage device. This
error detection and retry 1s performed automatically and 1s
transparent to the client. In another example, if a node failure
occurs, the virtual disk system may receive a modified list of
active nodes and resend incomplete data access requests to
active nodes coupled to the storage device. This reconfigu-

ration and retry also 1s transparent to the client.

Another feature of a virtual disk system in accordance
with the present invention 1s the ability to reconfigure the
cluster while the cluster 1s operating. When a cluster 1s
reconfigured, the mapping of virtual disks to storage devices
may be updated. To prevent errors, a synchronization com-
mand may be performed or operated to all the nodes of the
cluster prior to updating the mapping. The synchronization
command causes the nodes to stop 1ssuing data access
requests. After the mapping 1s updated, another synchroni-
zation command causes the node to resume 1ssuing data
aCCeSS requests.

The virtual disk system may be designed to serve as an
interface between a volume manager and storage devices or
between a client and a volume manager. In the former
conflguration, the client interfaces to the volume manager
and the volume manager interfaces to the virtual disk
system. In the latter configuration, the client interfaces to the
virtual disk system and the virtual disk system interfaces to
the volume manager.

Broadly speaking, the present invention contemplates a
data transport interface of a distributed computing system
including a configuration module and a connection module.
The distributed computing system includes a first node, a
second node, a third node and a data communication bus.
The configuration module 1s configured to determine a
number of active nodes of the distributed computing system
and a number of links between the active nodes. The
connection module 1s configured to receive data indicative
of the number of active nodes and the number of links from
the configuration module, to receive a request from a client
to transfer data to a first active node, and to convey the data
to the first active node via one or more of the links. When
the number of active nodes changes, the configuration
module notifies the connection module of the change and the
connection module 1s configured to modify the links to the
active nodes transparent to the client.

10

15

20

25

30

35

40

45

50

55

60

65

4

The present invention further contemplates a method of
transporting data 1n a distributed computing system includ-
ing a plurality of nodes and a data communication link, the
method comprising: determining physical resources in the
distributed computing system, wherein the physical
resources include active nodes of the distributed computing
system and active links between the active nodes; establish-
ing a connection over the active links; receiving a data
access request to convey data to a first of the active nodes;
conveying the data over one or more of the active links to the
first active node; determining that the physical resources
have changed; and modifying links to the changed physical
resources. The determination of change resources and the
modifying of new links 1s transparent to a client.

The present invention still further contemplates a
computer-readable storage medium comprising program
instructions for transporting data in a distributed computing
system comprising a plurality of nodes and data communi-
cation bus, wherein the program instructions execute on a
first node or a second node of the distributed computing
system and the program instructions are operable to 1mple-
ment the steps of: determining physical resources in the
distributed computing system, wherein the physical
resources include active nodes of the distributed computing
system and active links between the active nodes; establish-
ing a connection over the active links; receiving a data
access request to convey data to a first of the active nodes;
conveying the data over one or more of the active links to the
first active node; determining that the physical resources
have changed; and modifying links to the changed physical
resources. The determination of change resources and the
modifying of new links 1s transparent to a client.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw-
ings 1in which:

FIG. 1 1s a block diagram of a cluster configuration
according to one embodiment of the present invention.

FIG. 2 1s a block diagram of an alternative cluster
conflguration according to one embodiment of the present
invention.

FIG. 3 1s a block diagram of a virtual disk system
operating on two nodes of a cluster according to one
embodiment of the present invention.

FIG. 4 1s a block diagram 1llustrating the initialization of
a netdisk driver according to one embodiment of the present
invention.

FIG. 5 1s a block diagram 1llustrating the initialization of
a cluster transport interface according to one embodiment of
the present mvention.

FIG. 6 1s a flowchart diagram 1llustrating the operation of
a virtual disk system according to one embodiment of the
present 1nvention.

FIG. 7 1s a flowchart diagram 1illustrating the initiation of
a netdisk driver according to one embodiment of the present
invention.

FIG. 8 1s a flowchart diagram 1illustrating the initiation of
a cluster transport 1nterface according to one embodiment of
the present invention.

FIG. 9 1s a block diagram of a cluster transport interface
according to one embodiment of the present invention.

FIG. 10 1s a diagram 1illustrating permission data accord-
ing to one embodiment of the present invention.

US 6,421,787 Bl

S

FIG. 11 1s a tlowchart diagram 1llustrating the storage and
access of consistent permission data according to one
embodiment of the present invention.

FIG. 12 1s a flowchart diagram illustrating the update of
a conflguration mapping according to one embodiment of
the present mnvention.

While the imvention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thereot
are shown by way of example in the drawings and will
herein be described i1n detail. It should be understood,
however, that the drawings and detailed description thereto
are not 1ntended to limit the nvention to the particular form
disclosed, but on the contrary, the intention i1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present imnvention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
INVENTION

Turning now FIG. 1, a block diagram of a cluster con-
figuration according to one embodiment of the present

invention 1s shown. Cluster 100 includes a data communi-
cation link 102, three nodes 104A—-104C, and three storage

devices 108, 110 and 112. Data communication link 102
provides a data communication path for transferring data
between the nodes. Data communication link 102 contem-
plates a multi-drop link or point-to-point links. For example,
data communication link 102 may include three point-to-
point links. A first link may provide a communication path
between nodes 104A and 104B, a second link may provide
a communication path between nodes 104A and 104C, and
a third link may provide a communication path between
nodes 104B and 104C. In one embodiment, data communi-
cation link 102 implements a scalable coherent interface
(SCI). In one particular embodiment, the cluster implements
a TCP/IP protocol for transferring data over the SCI. It 1s
noted that three nodes are shown for illustrative purposes
only. Other embodiments may employee more or less nodes.

In the illustrating embodiment, storage device 108 i1s
physically connected to node 104A, storage device 110 1s
physically connected to node 104B and storage device 112
1s physically connected to node 104C. Storage devices
108-112 typically have storage capacities that exceed the
storage capacities of the memory of the nodes to which they
arec connected. Data may be stored in storage devices
108—112 which 1s not currently being used by a node, and
data from the storage device may be stored, or cached, in the
memory of the node when the data 1s needed. In the
illustrated embodiment, the storage devices are physically
connected to only one node. In alternative embodiments, a
storage device may be physically connected to a plurality of
nodes. Multiple physical connections allow a storage device
to be accessed even it one node physically connected to the
device fails or a storage device path fails.

Multiple instances of the same distributed program may
operate on each node. For example, volume manager 105A
and volume manager 105B are different instances of the
same distributed volume manager program. These instances
may communicate with each other via data communication
link 102. Each instance 1s given the same reference number
followed by a unique letter, e.g., 105SA or 105B. For
simplicity, the distributed program may be referred to col-
lectively using only the reference number, e.g., volume
manager 1035.

Node 104A includes a volume manager 105A and a
virtual disk system 106A. In the illustrated embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

6

virtual disk system 106A provides an interface between
volume manager 105 and storage devices 108—112. From the
perspective of volume manager 105A, each storage device
appears to be physically connected to node 104A. Virtual
disk system 106 1s a distributed program operating on a
plurality of nodes. In the illustrated embodiment, an mstance
of virtual disk system 106 1s operating on each node. Virtual
disk system 106A, which 1s the instance of virtual disk
system 106 operating on node 104A, includes three virtual
devices (VD1, VD2 and VD3) that represent storage devices
108—112, respectively. Volume manager 105 communicates
to the virtual devices in the same manner that it communi-
cates to storage devices physically connected to the node. In
one embodiment, volume manager 105 uses Unix device
driver semantics. Data access requests to storage device 108
(i.e VD1) are conveyed from virtual disk system 106A
directly to storage device 108. Data access requests to
storage devices 110 and 112 (1.e. VD2 and VD3) are
conveyed over data communication link 102 to the respec-

tive nodes physically connected to those devices.

It 1s noted that the virtual disks on each node are distinct
devices. For example, VD1 on nodes 104A, 104B and 104C
are each a unique device managed by a unique device driver.
Although the devices are unique, each VD1 device maps to
the same physical storage device. In other words, writing
data to VD1 on node 104A stores data to storage device 108
the same as writing data to VD1 on node 104B or 104C. It
1s further noted that each storage device may be physically
connected to more than one node. In this case, each node
physically connected to the device has a different device
driver that interfaces to the storage device.

In the illustrated embodiment, volume 1 (V1) of volume
manager 105A 1s coupled to VD1 and VD2. In one
embodiment, volume manager 105A may mirror these
devices. In alternative embodiments, volume manager 105A
may 1nclude other volumes coupled to other virtual devices.

For example, a second volume manager 105A may be
coupled to VD2 and VD3.

In nodes 104B and 104C, the volume managers (105B and
105C) and virtual disk systems (106B and 106C) operated in
substantially the same manner as volume manager 105A and
virtual disk system 106A. In the illustrated embodiment,
volume 2 (V2) of volume manager 105B is coupled to VD2
and VD3 of virtual disk system 106B. Virtual disk system
106B directly accesses storage device 110 and accesses
storage device 112 via communication interface 102 and

node 104C. Volume 3 (V3) of volume manager 105C 1is
coupled to VD2 and VD3 of virtual disk system 106C.
Virtual disk system 106C directly accesses storage device

112 and accesses storage device 110 via communication
interface 102 and node 104B.

Turning now to FIG. 2, a block diagram of an alternative
cluster configuration according to one embodiment of the
present invention 1s shown. Cluster 200 includes a data
communication link 102, three nodes 104A—-104C, and three
storage devices 108, 110 and 112. Components similar to
those 1n FIG. 1 are given the same reference numerals for
simplicity. In FIG. 2, the client mterfaces to virtual disk
system 106 rather than volume manager 105. The virtual
disk system interfaces to the volume manager, which inter-
faces to one or more storage devices. In this configuration,
volume manager 105 1s layered below virtual disk system
106. For simplicity, only the operation of node 104A is
discussed below. Nodes 104B and 104C operate in substan-
tially the same manner.

In node 104A, the client interfaces to virtual disk system
106 A. From the client’s perspective, virtual disk system

US 6,421,787 Bl

7

106A appears as three separate storage devices. In FIG. 2,
the three virtual devices are labeled as virtual volumes
(VV1, VV2 and VV3) to reflect the layering of the volume
manager below the virtual disk system. From the client’s
perspective, virtual volumes behave like a storage device.
For example, the virtual volume may use Unix device driver
semantics. The client may access any of the three volumes
of the cluster from virtual disk system 106A. Volume
manager 105A interfaces to the storage devices. In the
illustrated embodiment, volume 1 (V1) of volume manager
105A 1s coupled to storage devices 108 and 110. In one
embodiment, volume 1 may mirror data on storage devices
108 and 110. From the perspective of virtual disk system
106A, volume 1 of volume manager 105A behaves like a
storage device. For example, the volume may behave like a
Unix device driver.

Virtual volume 2 (VV2) of virtual disk system 106B
interfaces directly to volume 2 (V2) of volume manager
105B. Virtual volumes 1 and 3 communicate with volume 1
of node 104A and volume 3 of node 105C via data com-
munication link 102. In a similar manner, virtual volume 3
of virtual disk system 106C interfaces directly to volume 3
of volume manager 105C. Virtual volumes 1 and 2 commu-
nicate with volume 1 of node 104A and volume 2 of node
105B via data communication link 102. In the illustrated
embodiment, volume 2 of volume manager 105B and vol-
ume 3 of volume manager 105C are both physically con-
nected to storage devices 110 and 112.

The volume manager may be layered either above or
below the wvirtual disk system because both the volume
manager and the virtual disk system behave like storage
devices. Accordingly, it 1s transparent to the client whether
it interfaces to the volume manager or the virtual disk
system. In both embodiments, the client appears to have
direct access to three reliable storage devices. Both the
volume manager and the virtual disk system may interface
directly to a storage device. Some volume managers may
operate better when layered above the virtual disk device.
For example, a cluster volume manager, such as the Veritas
CVM, operates best when layered above the virtual disk
system, while non-distributed volume managers, such as
Solstice Disk Suite (SDS), may be were required to operate
below the virtual disk system. It 1s noted that a volume
manager must be distributed to operate below the virtual
disk system. It i1s further noted that a distributed volume
manager, such as CVM, can manage the volumes (V1, V2
and V3) as though they are one volume, much like the virtual
disk system manages the virtual disks on the nodes as though
they are one device.

Turning now to FIG. 3, a block diagram of a virtual disk
system operating on two nodes of a cluster according to one
embodiment of the present invention 1s shown. In the
illustrated embodiment, each node includes a user portion
and a kernel. The user portion of node 104A includes a
cluster membership monitor (CMM) 310A, a cluster con-
figuration database (CCD) 311A, a client 312A, a netdisk
daemon (NDD) 314A, and a cluster transport interface
daemon (CTID) 316A. The kernel of node 104A includes a
netdisk driver (ND) 318A, a netdisk master (NM) 320A, a
cluster transport interface (CTT) 322A, a cluster connectivity
monitor (CCM) 324A, a disk driver 326A and a network
transport 328A. The user portion of node 104B includes a
cluster membership monitor (CMM) 310B, a cluster con-
figuration database (CCD) 311B, a netdisk daecmon (NDD)
314B, and a cluster transport interface daemon (CTID)
316B. The kernel of node 104B 1ncludes a netdisk driver
(ND) 318B, a netdisk master (NM) 320B, a cluster transport

10

15

20

25

30

35

40

45

50

55

60

65

3

interface (CTT) 322B, a cluster connectivity monitor (CCM)
324B, a netdisk driver 326B and a network transport 328B.

In the 1llustrated embodiment, a volume manager 1s not
included. As discussed above 1n reference to FIGS. 1 and 2,
a volume manager may be implemented either above or
below the wvirtual disk system. If the volume manager 1s
implemented above the virtual disk system, client 312A
interfaces to the volume manager, which 1n turn interfaces to
ND 318A. Alternatively, if the volume manager 1s 1mple-
mented below the virtual disk system, NM 320A interfaces

to the volume manager, which 1n turn interfaces to disk
driver 326A.

A configuration module called CTID 316A 1s a dacmon
that 1nitializes a connection module called CTI 322A. When
the configuration of the cluster changes or node 316A 1is
initialized. CTID 316A queries CCD 311 A to obtain con-
figuration information. In one embodiment, configuration
information indicates the number of links between the nodes
of the cluster and the protocol associated with the links. In
onc embodiment, CTID 316A additionally queries CMM
310A to obtain membership imnformation, such as a list of
active nodes 1n the cluster. CTID 316A establishes connec-
tions over the links between the nodes and conveys the
membership information and link information to CTI 322A.
CTID 316A may communicate to CTI 322A via a private
interconnect and may use an I/O control request.

The links 1dentified by CCD 311A may be physical links
or virtual links. For example, CCM 324A may manage a pair
of physical links as one virtual link accessible by CTI 322A.
CCM 324 1s discussed 1n more detail below 1n reference to

FIG. 9.

CCD 311A 1s one 1nstance of a distributed highly avail-
able cluster database. CCD 311 stores consistent data even
in the presence of a failure. By storing mapping data in CCD
311, each node obtains the same mapping information even
in the presence of a failure. CCD 311 i1s discussed in more
detail 1n a co-pending, commonly assigned patent applica-
tion entitled “Highly available Distributed Cluster Configu-
ration Database” to Slaughter, et al., filed on Oct. 21, 1997,
Ser. No. 08/954,796.

CMM 310 1s a distributed program that monitors the
cluster membership. When the membership changes, CMM
310 detects that change and conveys new membership
information to other resources in the cluster such as CTID
316A and NDD 314A. Examples of membership changes
include a node joimning or leaving the cluster. In one
embodiment, CMM 310 outputs a configuration number
unique to each configuration.

NDD 314A 1s a daemon that initializes ND 318A when a
new device 1s opened or during reconfiguration. Reconfigu-
ration may occur when a node joins or leaves the cluster, or
when a node fails. In one embodiment, each virtual disk
device 1s 1nitialized separately. In one particular
embodiment, a virtual disk device 1s 1nitialized by a cluster
when the device 1s opened by that cluster, or after a
reconflguration if the virtual disk device was open prior to
the reconfiguration. In this manner, not all virtual disk
devices are 1nitialized after each reconfiguration.

In one embodiment, ND 318A stores a list of devices to
be opened and a list of opened devices. When a client
requests a device to be opened, ND 318A adds the device to
the list of devices to be opened. NDD 314A queries the list
of devices to be opened. If the list includes a device to open,
NDD 314A queries CCD 311A to obtain the mapping
information for the i1dentified device. NDD 314A may also
query CMM 310A to obtain membership information, such

US 6,421,787 Bl

9

as a list active nodes. NDD 314A conveys the mapping
information and membership information to ND 318A.
NDD 314A may communicate to ND 318A via a private

interconnect and may use an I/O control request.

In one embodiment, the mapping information for a device
identifies a primary and secondary node physically con-
nected to a storage device and a disk device on those nodes
corresponding to the storage device. Each pair of nodes and
disks may be referred to as node/disk pairs. Based on the
primary and secondary node/disk pair and the membership
information, ND 318A may select a node to route a data
access request for a device. Once ND 314A and CTT 322A
have been initialize, the virtual disk system 1s ready to
accept data access requests from client 312A.

Client 312 A accesses the virtual devices of the virtual disk
system 1n the same manner as 1t accesses storage devices.
From the client’s perspective, it appears that each storage
device, or volume, 1s physically connected to the node. In
the 1llustrated embodiment, when client 312A accesses data
from a storage device, it sends a data access request to ND
318A. In one embodiment, client 312A specifies the desti-
nation storage device, the type of operation and the location
to retrieve or store the data to ND 312A. The rest of the
operation 1s transparent to client 312A. ND 318A, based on
the mapping and current membership information, deter-
mines to which node to convey the data access request. In
one embodiment, the mapping information obtained from
CCD 311A 1includes a primary and secondary node physi-
cally connected to the storage device. ND 318A may route
the data access request to the primary node if the primary
node 1s active. Alternatively, if the primary node i1s not
active, then ND 318 A may route the data access request to
the secondary node. Which node 1s used to access the storage
device 1s transparent to client 312A.

ND 318A conveys the data access request to CTI 322A
and specifies to which node to convey the data access
request. How CTI 322A transfers the data access request to
the destination node 1s transparent to ND 318A and client
312A. In one embodiment, 1f the storage device 1s directly
coupled to node 104A, ND 318A conveys the data access
request to NM 320A rather than CTI 322A. NM 320A
conveys the data access request to disk driver 326A, which
In turns accesses the storage device. In one embodiment,
NM 320A 1s a portion of ND 318A that interfaces to disk
driver 326 A. Disk driver 326 A 1interfaces to one or more
storage devices physically connected to a node 104A.

CTI 322A manages a plurality of links. CTI 322A 1s one
instance of the distributed program CTI 322. CTI 322A may
manage one or more links to the destination node of a data
access request. For example, 1f the destination node for the
data access request 1s node 104B, CTI 322A may manage
three links to that node. CTI 322A may transport all the data
to node 104B via one link or may distribute the data over the
three links. CTI 322A may append a field to the data access
request to 1dentify the destination client at destination node.
CTI 322B of node 104B may service multiple clients. The
field appended to the message by CTI 322A 1dentifies to
which client CTI 322B should route that data. For example,
CTI 322A may append data to a data request received by ND

318A that specifies the destination client as ND 318B.

In one embodiment, CCM 324A manages two or more
redundant physical links. From the perspective of CTI 322A,
the redundant physical links appear as one logical link. CCM
324 A exchanges messages over the physical links with CCM
324B. The two 1instances of CCM 324 reach agreement
regarding which of the redundant links are operational.

10

15

20

25

30

35

40

45

50

55

60

65

10

CMM 324 may pick one operational physical link to transfer
data. If that link fails, CCM 324 may detect the failure and
transfer data on the alternate link. From the perspective of
CTI 322, each logical link appears as one highly available
link. In one embodiment, CCM 324A manages links to each

node 1n the cluster. For example, CMM 324A may manage
links to nodes 104B and 104C.

Network transport 328 A performs the protocol functions
over the links of data communicate link 112. In one
embodiment, a TCP/IP protocol 1s used over data commu-
nication link 112. In other embodiments, other protocols
may be implemented. For example, a faster protocol such as
Low Latency Connectivity Layer (LLCL), Message Passing

Interface (MPI), or Low Overhead Communication (LOCO)
may be used.

In node 104B, network transport 328B receives the data
access request and transports the data using the appropriate
protocol to CTT 322B. CTI 322B may partially decode the
data access request to determine its destination client. In the
llustrated embodiment, the data 1s routed to ND 318B. ND
318B may partially decode the data access request to deter-
mine the destination storage device. If the storage device 1s
physically coupled to node 104B, ND 318B conveys the
request to NM320B, which conveys the request to disk
driver 326B. Disk driver 326B accesses the storage device.
If the data access request 1s a read transaction, the requested
data 1s routed back to client 312A via the ND 318, CTT 322

and data communication link 112.

One feature of the virtual disk system according to one
embodiment of the present invention 1s high availability. The
virtual disk system 1s designed such that data access requests
are reliably performed in the presence of a failure, such as
a node failure. Towards this end, ND 318A stores a list of
pending data access requests. If a data access request 1s not
successfully completed, the virtual disk system retries the
data access request possibly to another node. The requesting
node may detect an 1ncomplete data access request by
recelving a negative acknowledge signal or it may receive
reconfiguration data indicating that a destination node 1s not
active. When the data access request 1s successfully
complete, it 1s removed from the list of pending data access
requests.

For example, node 104B may be a primary node for a
storage device and node 104C may be a secondary node for
that storage device. When ND 318A conveys a data access
request to the storage device, it may convey the data access
request to the primary node, which 1s node 104B. If node
104B 1s unable to successfully complete the data access
request, for example 1f the storage device path between disk
driver 326B and the storage device 1s non-functional, node
104A may receive a negative acknowledgement signal 1ndi-
cating that the data access request was not successiully
completed. Node 104A may then resend the data access
request to the secondary node, which i1s node 104C. Node
104 A may store information indicating that node 104B 1s not
able to communicate with the storage device and subse-
quently send new data access requests to other nodes.

In an alternative example, node 104B may be non-
operational. In one embodiment, the cluster membership
data acquired by node 104A from CMM 310A may indicate
that the node 1s not operational. Accordingly, ND 318 A may
route data access requests to the secondary node. In the
above manner, data access requests are successiully com-
pleted even 1n the presence of a failure.

Turning now to FIG. 4, a block diagram 1illustrating the
initialization of a netdisk driver 1s shown according to one

US 6,421,787 Bl

11

embodiment of the present mnvention. FIG. 4 illustrates the
initialization of ND 318A 1 node 104A. The initialization of
other netdisk drivers in the cluster may be performed in a
substantially similar manner.

In one embodiment, prior to accessing a storage device, 2
the storage device 1s opened. For example, an open com-
mand may be executed that causes the storage device to be
initialized. Similarly each virtual device on each node may
be opened prior to accessing 1t. Client 312A outputs a
command to ND 318A to open a virtual device. ND 318A 10
stores the device to be opened 1n a list. In one embodiment,
NDD 314A periodically queries the list to determine which
devices to 1nitialize. In an alternative embodiment, ND 318A
may output a signal to NDD 314A indicating that a device
needs to be initialized. NDD 314A queries CCD 311A to 15
obtain mapping information for the device to be opened, and
queries CMM 310A for current membership information.
NDD 314A conveys the mapping and membership informa-
tion to ND 318A. ND 318A stores the mapping and mem-
bership information to a configuration file. ND 318A uses 20
the mapping and membership data stored i1n the configura-
tion file to determine the routing of data access requests to

nodes. ND 318A then notifies client 312 A that the device has

been opened.

In one embodiment, the mapping information for each 25

virtual device includes: the name of the virtual device, a
primary node, the name of the storage device at the primary
node (i.e., the name of the device that corresponds to the
storage device), a secondary node and the name of the
storage device at the secondary node. The mapping infor-
mation may additionally include an identification number
for the virtual device and a cluster-unique name for the
storage device.

30

ND 318A additionally stores a reconfiguration number
assoclated with the mapping and membership data. The
reconflguration number 1s obtained from CCM 310A. ND
318A uses the reconfiguration number to determine whether
its current membership data 1s up to date with respect to the
most recent configuration.

In one embodiment, when the configuration of the cluster
changes, CMM 310A notifies NDD 314A of the new mem-
bership information. For example, if a node failure 1s
detected, CMM 310A will notify NDD 314A that a recon-
figuration has occurred and convey the new membership
data to NDD 314A. NDD 314A conveys the new member-
ship information to ND 318A, which uses the new mem-
bership information 1n conjunction with the mapping infor-
mation to route future data access requests.

35

40

In one embodiment, a filesystem manages the wvirtual s
disks on a node. This filesystem may be called a netdisk
filesystem (NDFS). NDFES is configured to create a special
device file for virtual disks when a node opens the virtual
disk. The special device file represents the virtual disk in the
operating system. 55

In operating systems, such as the UNIX operating system,
devices may be treated as files. The file associated with a
device (called a device file or a special device filed) is
normally created by an initialization program that runs
during the boot-up phase of the operating system. The 60
initialization program determines the physical devices
attached to the computer system and creates device files
corresponding to those physical devices. In one
embodiment, virtual devices are initialized the first time they
are accessed rather than during boot-up. This situation and 65
the fact that the virtual disk may not be physically connected
to the node means that the device files for the virtual disks

12

may not be created during initialization. Because the virtual
disks preferably are accessible like other devices, NDES 1s
configured to create device files for the virtual devices when
they are first opened. In one embodiment, a device file 1s
only created the first time a node opens a virtual device.
Subsequent opens of the virtual device do not cause device
files to be created.

In one embodiment, NDFS detects a command to open a
virtual device. If this 1s the first time the virtual device has
been opened, NDFS sends a creation request to ND 318A.
In one embodiment, NDFS has a private interface to ND
318A. ND 318A stores the virtual device to create 1n a list.
The list may be the same list used to store devices to open
or may be a separate list for devices to create. NDD 314A
may periodically query the list to determine which devices
to create or ND 318A may output a signal to NDD 314A
indicating a device needs to be created. NDD 314A queries
CCD 311A to obtain permission data for the device to be
opened. NDD 314A conveys the permission data to ND
318A which 1n turn conveys the permission data to NDFS.
NDFS will create the device file for the device with the
permission data received from CCD 311A. In one
embodiment, the device 1s opened after the device file 1s
created using a normal device open procedure as discussed
above. Subsequent opens of the same device by the same
node may result in a normal open operation without the need
for NDFS to be involved. Accordingly, a performance
penalty 1s only incurred the first time a device 1s opened.
Subsequent commands to open the device are performed 1n
the same manner as the opening of any other device.

Turning now to FIG. §, a block diagram 1illustrating the
initialization of a cluster transport interface according to one
embodiment of the present invention 1s shown. FIG. §
1llustrates the mitialization of CTI 316A 1n node 104A. The
initialization of other cluster transport interfaces in the
cluster may be performed 1n a substantially stmilar manner.

In one embodiment, prior to transferring data over data
communication link 102, CTID 316A establishes connec-
tions over the available links. During initialization, CTID
316A queries CMM 310A for data identifying the current
cluster membership and queries CCD 311A for data 1denti-
fying which links are connected to which nodes. In one
embodiment, CCD 311A stores additional information about
the links such as the transfer protocol of the links. CTID
316A establishes connections over the available links and
passes the link information and membership data to CTI
322A. In one embodiment, CTID 316A establishes TCP/IP

connections over the available links.

CTI 322A interfaces to network transport 328A to
exchange data to other instances of CTI 322. In one
embodiment, network transport 328A interfaces to CCM
324 A, which manages one or more redundant links. When
CTI 322A receives a data access request destined for a
particular node, 1t determines which connections connect the
requesting node to the destination node. CTI 322A deter-
mines on which connection(s), to transport the data to the
destination node. For example, 1if CTI 322A manages con-
nections over three links to node 104B and it receives a data
access request destined for that node, 1t may transter all the
data via one connection or it may transfer a portion of the
data over each of the three connections.

When the cluster i1s reconfigured, CMM 310A notifies
CTID 316A of the event. CTID 316A obtains the new
membership data from CCD 311A and conveys the new
membership data and a new configuration number to CTI

322A. Additionally, CTID 316A may obtain link data from

