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CONFIGURABLE REAL-TIME TRACE PORT FOR
EMBEDDED PROCESSORS

FIELD OF THE INVENTION

[0001] The present invention relates generally to embed-
ded processor devices, and more particularly to a method
and structure for debugging programs executed by embed-
ded processors.

BACKGROUND OF THE INVENTION

[0002] Integrated circuits, including devices incorporating
embedded processors, require substantial testing (“debug-
ging”) in order to assure proper functioning. Tracing is an
often-used embedded processor debugging technique that
involves capturing and analyzing data and/or program
(“trace”) information generated within the processor core,
and then transmitting the trace information through selected
pins of the embedded processor device to a test (debug or
“emulator”) system using a special interface (e.g., a special
printed circuit board (PCB) having a socket). Trace opera-
tions are generally characterized as either static (post-pro-
cess) trace operations, or dynamic (real-time) trace opera-
tions. Static tracing typically includes writing the trace
information into a special on-chip memory while the pro-
gram is being executed, and then off-loading the trace
information after execution is completed. Real-time tracing
involves temporarily storing trace information in a relatively
small output buffer (e.g., a First-In, First-Out (FIFO)
memory structure), and transmitting the trace information
from the output buffer through associated device pins to an
external debug system (e.g., a computer or workstation
running appropriate debug software) while a program is
being executed.

[0003] Although both real-time and post-process trace
operations have beneficial aspects, the main advantage of
real-time tracing over post-process tracing is that real-time
tracing facilitates smaller device size. Unlike static traces
that require a special on-chip memory, real-time trace opera-
tions facilitate smaller embedded processor devices because
trace data is immediately transmitted off of the embedded
processor device while the program is being executed.
Further, unlike static tracing where the size of the special
on-chip memory limits the amount of trace information that
can be generated during a trace operation, the amount of
trace information generated during real-time trace opera-
tions is theoretically unlimited. With static tracing, the only
way to increase the amount of post-process trace informa-
tion is to increase the special on-chip memory, which further
increases chip size.

[0004] Despite the advantages of real-time trace opera-
tions over static trace operations, practical limitations exist
that constrain the use of real-time tracing in some modern
embedded processor devices. One such limitation is a pos-
sible mismatch between the rate at which trace information
is generated by the processor core, and the rate at which the
trace information is transmitted from the embedded proces-
sor to an external debug system. That is, modern embedded
processors have internal clocking speeds of 400 MHz or
more, which is often two, four, or more times faster than the
transmission/processing speed of an external debug system.
When a burst of trace information is too large and generated
faster than it can be off-loaded to the external debug system,
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a buffer “over-run” error occurs in which subsequently
generated trace information is unusable.

[0005] Two practical solutions to the buffer over-run prob-
lem associated with conventional embedded processor
devices are to increase the size of the output buffer, and to
increase the output rate from the output buffer by off-loading
multiple trace information “words” in parallel. However,
increasing the size of the output buffer undesirably increases
chip size/cost, and only partially addresses the buffer over-
run problem in that the output buffer can still be over-
whelmed if large amounts of trace data are generated in a
relatively short burst. In addition, increasing the output rate
from the output buffer requires increasing the number of
device pins dedicated to trace operations, which may not be
possible in some embedded processor devices. That is,
unlike static trace operations in which stored trace informa-
tion can be transmitted serially, for example, through stan-
dard JTAG pins, real-time trace operations typically require
a relatively large number of dedicated device pins to trans-
mit trace information to an external debug system at or near
the processor core frequency. With the recent trend toward
64-bit (or more) embedded processors having processor core
frequencies of 400 MHz or more, a embedded processor
designer must make a difficult choice between using device
pins for debug operations and “normal operations”, and in
some cases may not have sufficient pins to transmit real-time
trace information. Although compression techniques such as
those associated with IEEE-ISTO 5001™-1999 (the “Nexus
5001 Forum™ Standard”) have been used to reduce the
demand for dedicated pins by reducing the amount of
off-loaded trace information, these conventional compres-
sion techniques provide insufficient control over trace opera-
tions in many embedded processor applications, thereby
leading to buffer over-runs that produce unusable trace
information.

[0006] What is needed is a configurable trace port for
embedded processors that avoids the buffer over-run prob-
lems associated with conventional real-time trace circuits.
What is also needed is a configurable trace port that supports
a wide range of embedded processor devices and debug
systems.

SUMMARY OF THE INVENTION

[0007] The present invention is directed to a configurable
trace port (circuit) for an embedded processor device that
selectively limits the amount of trace information passed
from a processor core to an external debug system by
allowing a user to selectively filter data and program infor-
mation based on a wide range of user-defined combinations
and/or sequences of trigger events (e.g., instruction
addresses/types or data addresses/values), and then com-
pressing the filtered data/program information, thereby alle-
viating the data trace over-runs associated with conventional
processors. The present invention is also directed to a
configurable trace port that allows selective control over the
trace information output rate to an off-chip debug system,
thereby providing a trace port that supports a wide range of
embedded processor devices and debug systems.

[0008] According to an embodiment of the present inven-
tion, an embedded processor device includes a configurable
trace port that is connected between a processor core and a
set of dedicated device pins. The configurable trace port
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includes a configurable filter circuit that passes trace infor-
mation from data and/or program busses located in the
processor core. The trace information is then compressed by
a compression circuit, and then written into a configurable
output buffer (e.g., a FIFO). The buffered trace information
is then written from the configurable output buffer to an
external debug system via a set of dedicated device pins and
a test socket.

[0009] According to an aspect of the present invention, the
configurable filter circuit of the trace port monitors proces-
sor core operations, and passes selected data/program values
to the compression circuit in response to user-defined com-
binations and/or sequences of instruction and/or data
addresses/values utilized in the processor core. In particular,
trace operations are enabled and disabled using a plurality of
user-configurable trigger event detection registers that gen-
erate pre-trigger signals in response to user-defined trigger
events (e.g., the execution of an instruction located within a
user-defined range of instructions), and a programmable
trigger logic circuit that generates intermediate (combina-
tional) trigger signals in response to user-defined combina-
tions of the pre-trigger signals, and/or generates an inter-
mediate (sequential) trigger signal in response to a user-
defined sequences of either the pre-trigger signals or the
combinational trigger signals. The intermediate trigger sig-
nals are then utilized to assert trace enable/disable control
signals that control the flow of trace information into the
trace port. Accordingly, the configurable trace port of the
present invention facilitates highly flexible trace operations
during the development of a software program that allows a
developer to selectively limit the amount of trace informa-
tion passed to the compression circuit and output buffer of
the trace port.

[0010] According to another aspect of the present inven-
tion, the compression circuit utilized to compress the filtered
program trace information and data trace information
includes a program compression circuit and data compres-
sion circuit. The program compression circuit receives pro-
gram information (e.g., program counter values and associ-
ated instruction identification information), and generates
one or more bytes (8-bits) of compressed program informa-
tion along with corresponding identification codes that iden-
tify each byte of compressed program information. The data
compression circuit receives both data address and data
value information, and generates one or more words (e.g.,
32-bits) of compressed data information and corresponding
identification codes. By compressing both program and data
information prior to transmission to the output buffer, the
present invention further facilitates highly flexible trace
operations during the development of a software program by
further limiting the amount of trace information passed to
the output buffer of the trace port.

[0011] According to yet another aspect of the present
invention, the configurable output buffer includes a program
FIFO circuit and a data FIFO circuit that separately buffer
compressed program trace and data trace information, and
drive the buffered data values onto corresponding dedicated
device pins at a selected frequency (e.g., f/2 or /4, where f
is the core frequency) in order to facilitate a wide range of
embedded processor applications and associated debug sys-
tems. Each of the program FIFO circuit and the data FIFO
circuit includes a write pointer circuit, a series of FIFO
registers, and a read pointer/driver circuit. The write pointer
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circuits of the program/data FIFO circuits write program/
data trace information into the respective program/data
FIFO registers at the processor core clock speed. According
to another aspect of the present invention, the read pointer/
driver circuit of the data FIFO circuit is configurable to
utilize one or more output pointers to allow high frequency
off-loading when sufficient device pins are available, thereby
supporting both Class 3 and Class 4 compliant Nexus 5001
Forum trace operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] These and other features, aspects and advantages of
the present invention will become better understood with
regard to the following description, appended claims, and
accompanying drawings, where:

[0013] FIG. 1 is simplified block diagram showing a
system for testing an embedded processor including a con-
figurable test port according to an embodiment of the present
invention;

[0014] FIG. 2 is block diagram showing the configurable
trace port circuit utilizing by the embedded processor of
FIG. 1 in additional detail;

[0015] FIG. 3 is a simplified block diagram showing a
filter circuit utilized by the trace port circuit of FIG. 2
according to an embodiment of the present invention;

[0016] FIG. 4 is a block diagram showing an on-chip
debug support (OCDS) circuit for generating trace enable/
disable control signals utilized by the filter circuit of FIG. 3;

[0017] FIG. 5 is a block diagram showing programmable
trigger generator utilized by the OCDS circuit according to
an embodiment of the present invention;

[0018] FIG. 6 is a simplified circuit diagram showing a
portion of the programmable trigger generator of FIG. §;

[0019] FIG. 7 is a simplified circuit diagram showing a
sum-of-products circuit utilized in the programmable trigger
generator of FIG. 5;

[0020] FIG. 8 is a finite state machine diagram depicting
a state machine utilized in the programmable trigger gen-
erator of FIG. § according to an embodiment of the present
invention;

[0021] FIG. 9 is a simplified diagram showing a compres-
sion circuit utilized by the trace port circuit of FIG. 2;

[0022] FIGS. 10(A), 10(B), and 10(C) are a simplified
diagram showing data generated by the compression circuit
of FIG. 9; and

[0023] FIG. 11 is a simplified diagram showing a program
output buffer utilized by the trace port circuit of FIG. 2; and

[0024] FIGS. 12(A) and 12(B) are simplified diagrams
showing a data output buffer utilized by the trace port circuit
of FIG. 2.

DETAILED DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a block diagram is a simplified diagram
showing a test arrangement for testing/debugging an embed-
ded processor device 100. Device 100 is fabricated using
known techniques onto a substrate (die) that is then pack-
aged according to known techniques such that electrical
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connection is provided to the various circuits making up
device 100 through a plurality of pins 160. During the test
process, device 100 is typically mounted onto a printed
circuit board (PCB) 170 such that signal paths are provided
between pins 160 and a debug system (e.g., a computer or
workstation running suitable debugging software) 180.

[0026] Referring to the right side of FIG. 1, embedded
processor device 100 includes a processor core 110 that
communicates via a bus 120 with on-board system memory
130. Core 110 includes a program memory 111 for storing
instructions associated with a developer’s software program,
a fetch stage 112 for fetching (retrieving) instructions to be
executed, a decode stage 114 for decoding the fetched
instructions, an execute stage 116 for executing the instruc-
tions is an appropriate order, a data memory 118 for tem-
porarily storing data acted upon by execute stage 116, and a
write back stage 119 for writing data and instructions back
to preceding sections of core 110 and to the on-board
memory components. Instructions and data are transmitted
within core 110 using portions of bus 120 referred to below
as an instruction bus 121, a data address bus 125, and a data
value bus 127. In particular, program bus 121 transmits
instruction address information (e.g., a program counter
value that identifies the “position” of the instruction within
a program) and information regarding the instruction type
(e.g., load, store, loop, etc.). Data value bus 127 transmits a
data value “loaded” (read) from a particular processor
register, or a data value “stored” (written) into a particular
register, and information regarding the size of the data value
(e.g., the number of bytes read or written). Data address bus
125 transmits the source or destination address of the
register to/from which the data value on data value bus 127
is loaded/stored. Those of ordinary skill in the art will
recognize that the data and program information loaded/
stored as described herein may be obtained from distinct and
separate bus portions within processor core 110. Further, the
operation of core 110 is generally known in the art and is
beyond the scope of the present invention; therefore, a
detailed description of core 110 is omitted for brevity.

[0027] Embedded processor device 100 also includes an
on-chip debug support (OCDS) circuit 140, which in the
present embodiment is located in core 110 and is connected
to instruction bus 121, data address bus 125, and data value
bus 127. The purpose of the OCDS circuit 140 is to generate
breakpoint (BP) trigger signals (indicated as being directed
to decode stage 114) and watchpoint (WP) trigger signals
(which are directed outside of core 110) in response to
user-defined trigger events occurring within core 110, and
also in response to external trigger events generated outside
of core 110. In one embodiment, the user-defined trigger
events occurring within core 110 are detected by monitoring
data and program information transmitted on instruction bus
121, data address bus 125, and data value bus 127. Of
particular relevance to the present invention is the genera-
tion of one or more trace enable/trace disable (TRACE-EN/
DIS) control signals by OCDS circuit 140 that are utilized to
control configurable trace port 150 (discussed below). Novel
aspects of OCDS 140 that are related to the generation of the
trace enable/disable control signals are described in addi-
tional detail below. Additional detail regarding OCDS cir-
cuit 140 is disclosed in co-owned and co-pending U.S.
patent application Ser. No. 10/317,875-6764, entitled “Digi-
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tal Processor With Programmable Breakpoint/Watchpoint
Trigger Generation Circuit”, which is incorporated herein by
reference in its entirety.

[0028] According to an embodiment of the present inven-
tion, configurable trace port 150 is connected between
processor core 110 and a set of dedicated device pins 160.
In particular, configurable trace port 150 receives data and
program (instruction) information that are generated in core
110 and transmitted on, for example, instruction bus 121,
data address bus 125, and data value bus 127. Configurable
trace port includes a configurable filter circuit 152, a com-
pression circuit 155, and a configurable output buffer (e.g.,
a FIFO) 157. According to the methods described in addi-
tional detail below, configurable filter circuit 152 is utilized
to alleviate data trace over-runs by selectively limiting the
amount of trace information passed from processor core 110
to external debug system 180 by allowing a user to selec-
tively filter data and program information based on a wide
range of user-defined combinations and/or sequences of
trigger events (e.g., instruction addresses/types or data
addresses/values). Note that the phrase “trace information”
is utilized herein to refer only to data/program information
passed by configurable filter circuit 152 to compression
circuit 155. Compression circuit 155 then compresses the
filtered trace information in the manner described below, and
then the compressed trace information is written into con-
figurable output buffer (e.g., a FIFO) 157. The buffered trace
information is then written from the configurable output
buffer to external debug system 180 via associated (dedi-
cated) device pins 160 and a test socket 170. According to
the methods described in additional detail below, config-
urable output buffer 157 allows selective control over the
trace information output rate to external debug system 180,
thereby enabling configurable trace port 150 to support a
wide range of embedded processor devices and debug
systems.

[0029] FIG. 2 is a simplified block diagram showing
configurable filter circuit 152, compression circuit 155, and
configurable output buffer 157 of configurable trace port 150
according to an exemplary embodiment of the present
invention. As mentioned above, configurable filter circuit
152 receives program (instruction) information from
instruction bus 121, data address bus 125, and data value bus
127, and passes selected trace information to compression
circuit 155. In the exemplary embodiment, configurable
filter circuit 152 is controlled both the TRACE-EN/DIS
control signal received from OCDS circuit 140, and by a
TRACE MODE control signal generated, for example, by
user-programmable  configuration memory (described
below). Also in accordance with the exemplary embodiment,
compression circuit 155 is separated into a first (program)
compression circuit 220 and a second (data) compression
circuit 225, and output buffer 157 is separated into a
program (first) FIFO 230 and a data (second) FIFO 235.
Program compression circuit 220 receives 32 bits of pro-
gram (instruction) trace information from configurable filter
152 (along with one or more identification bits), and gen-
erates compressed program trace information that is passed
to program FIFO 230 of output buffer 157. Data compres-
sion circuit 225 receives 32 bits of data address information
and 64 bits of data value information from configurable filter
152 (along with one or more data identification bits), and
generates compressed data trace information that is passed
to data FIFO 235 of output buffer 157. Each of the circuit
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portions associated with the exemplary embodiment shown
in FIG. 2 is described in additional detail below.

[0030] Configurable Filter Circuit

[0031] FIG. 3 is a simplified block diagram showing
configurable filter circuit 152 in additional detail. According
to an embodiment of the present invention, configurable
filter circuit 152 includes a first trace filter 310 that is
controlled by the TRACE-EN/DIS control signal received
from OCDS circuit 140, and a second trace filter 320 that is
controlled by one or more TRACE MODE control signals
generated by a configuration memory 325.

[0032] Referring to the left side of FIG. 3, first trace filter
310 monitors processor core 110 (i.e., is connected to core
buses 121, 125, and 127), and includes a switch 315 that is
controlled by the TRACE-EN/DIS control signal to pass
selected trace information “words” on intermediate bus lines
121-T1, 125-T1, and 127-T1 to second trace filter circuit
320. For example, switch 315 is enabled (opened, or turned
on) to pass data and program information from busses 121,
125, and 127 when the TRACE-EN/DIS control signal is
asserted, and is disabled (closed, or turned off) to prevent the
passage of program and data information when the TRACE-
EN/DIS control signal is de-asserted. As discussed in greater
detail below, the TRACE-EN/DIS control signal is asserted
and de-asserted according to user-defined combinations and/
or sequences of instruction and/or data addresses/values
transmitted on busses 121, 125, and 127.

[0033] Referring briefly to FIG. 1, OCDS circuit 140
receives first instruction signals from fetch stage 112 via a
first instruction bus portion 121-BBM, and second instruc-
tion signals from write back stage 119 via a second instruc-
tion bus portion 121-BAM. OCDS circuit 140 also receives
data address signals from write back stage 119 via a portion
of data address bus 125, and data value signals from write
back stage 119 via a portion of data value bus 127. As
mentioned above, OCDS circuit 140 is utilized to generate
TRACE-EN/DIS control signals that are used to control
switch 315 of configurable filter circuit 152. In the embodi-
ment shown in FIG. 1, OCDS circuit 140 is incorporated
into core 110, although in other embodiments portions of
OCDS circuit 140 may be replicated in configurable filter
circuit 152, as suggested in FIG. 3. In the embodiment
shown in FIG. 3, OCDS circuit 140 receives 32-bit instruc-
tion signals (plus one or more instruction identification bits)
from fetch stage 112 and write back stage 119 (see FIG. 1)
via a first instruction bus portion 121. OCDS circuit 340 also
receives 32-bit data address signals (plus one or more data
address identification bits) from write back stage 119 via a
data address bus 125, and 64-bit data value signals (plus one
or more data value identification bits) from write back stage
119 via data value bus 127. Although the purpose of the
OCDS circuit 140 is to generate several breakpoint and
watchpoint signals in response to user-defined trigger events
occurring within core 110, of particular relevance to the
present invention are the user-defined trigger events that are
used to generate one or more TRACE-EN/DIS control
signals.

[0034] FIG. 4 is a simplified block diagram showing
OCDS circuit 140 in additional detail according to an
embodiment of the present invention. OCDS circuit 140
includes a programmable trigger generator (PROG TRIG-
GER GEN) circuit 410, an action generator (ACTION GEN)
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circuit 420, and a performance measurement block 430.
Programmable trigger generator 410 and action generator
420 are discussed in detail below. Performance measure-
ment block 430 includes counters that can be used for
multiple purposes, such as measuring the time taken by core
110 (FIG. 1) to complete a given task, caching performance
analysis information associated with for a given application,
measuring MMU performance, and verifying architectural
features. Because the operation of performance measure-
ment block 430 is peripheral to the operation of trigger
generator 410 and action generator circuit 420, a detailed
description of measurement block 430 is omitted for brevity.

[0035] Referring to the left side of FIG. 4, programmable
trigger generator 410 includes one or more programmable
trigger generator (PTG) banks 412-1 through 412-4, and an
optional programmable trigger prioritization circuit 415.
Programmable trigger generator (PTG) banks 412-1 through
412-4 generate several trigger signals TS0 through TS15 in
response to user-defined combinations or sequences of
instruction addresses/types and/or data addresses/values
processed transmitted on instruction bus 121, data address
bus 125, and data value bus 127, respectively (note that
instruction bus 121 includes instruction addresses passed on
both instruction bus portion 121-BBM from fetch stage 112
and instruction bus portion 121-BAM from write back stage
119; see FIG. 1). Because two or more of multiple trigger
signals TS0-TS15 can be generated simultaneously, a pro-
grammable trigger prioritization circuit 415 is provided to
select an output programmable trigger (PROG TRIGGER)
signal from such simultaneously asserted multiple trigger
signals TS0-TS15 according to predetermined hard-wired
priority (although a user-programmable priority circuit may
be used). As discussed in additional detail below, the output
programmable trigger signal transmitted to action generator
420 includes an action identification that defines the action
to be taken in response to the associated trigger signal
TS0-TS15.

[0036] Action generator circuit 420 includes a trigger
selection (e.g., multiplexing) circuit 422 and an action/
trigger switch circuit 425. Trigger selection circuit 422
passes either one of the external triggers or the program-
mable trigger (received from trigger generator 410) to
action/trigger switch 425 according to a predetermined
priority. Each trigger passed to action/trigger switch 425
includes an action identification (ID) that corresponds to an
associated breakpoint trigger or watchpoint trigger, and also
includes source identification data and signals that specify
whether the action is associated with a BBM or BAM action.
Action/trigger switch 425 decodes the action ID associated
with each trigger received from trigger selection circuit 422,
and asserts TRACE-EN/DIS control signals that are trans-
mitted to switch 315 (see FIG. 3) or another associated
watchpoint trigger, or an associated breakpoint trigger (e.g.,
TRAP or HALT) that is transmitted either to core 110 (FIG.
1). For example, when a programmable trigger generated by
programmable trigger generator 410 is passed by trigger
selection circuit 422 having an action ID corresponding to a
“trace enable” trigger action, then action/trigger switch 425
asserts the TRACE-EN/DIS control signal, which is trans-
mitted to switch 315, thereby causing switch 315 to pass a
corresponding trace information “word” (i.e., 32+bits from
instruction bus 121, 32+bits from data address bus 125, and
64+bits from data value bus 127) to compression circuit 155.
The trace operation is subsequently turned off (disabled)
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when an associated programmable trigger is asserted, which
causes action/trigger switch 425 to de-assert the TRACE-
EN/DIS control signal, thereby causing switch 315 to block
(ie., prevent) the passage of information from busses 121,
125, and 127 to compression circuit 155.

[0037] FIG. 5 is a block diagram showing a portion of
programmable trigger generator 410 in additional detail. In
particular, FIG. 5 shows the main circuit blocks associated
with PTG bank 412-1, which is representative of PTG banks
412-2 through 412-4 (sce FIG. 4). In accordance with an
embodiment of the present invention, PTG bank 412-1
includes a trigger event detection (TED) register 510 and a
programmable trigger logic circuit 520. Similar to conven-
tional breakpoint/watchpoint trigger circuits, TED register
510 monitors instruction, data address, and data value sig-
nals transmitted on instruction bus 121, data address bus
125, and data value bus 127, respectively, and generates
pre-trigger signals PTO through PT15 when user-defined
instructions/addresses/values are transmitted on these bus-
ses. In particular, TED register 510 is programmed by a
developer to store predetermined instruction, data address,
and data value information. During debug operations, the
stored instructions/addresses/values are compared with
instructions, data addresses, and data values transmitted on
busses 121, 125, and 127, respectively. When the transmit-
ted addresses/values match (or are within a range defined
by) the stored addresses/values, an associated pre-trigger
signal is generated that is passed to programmable trigger
logic circuit 520. Programmable trigger logic circuit 520 is
also programmed by the developer to selectively detect
logical combinations of pre-trigger signals and/or sequences
thereof, and to generate associated triggers TEQ through TE3
when the user-defined logical combinations and/or
sequences occur. Triggers TEQ through TE3 are then passed
to programmable trigger prioritization circuit 415 (discussed
above), which passes one of these triggers (or a trigger from
another PTG bank) to action generator 420 (see FIG. 4).

[0038] FIG. 6 is a block diagram showing TED register
510 and programmable trigger logic circuit 520 of PTG bank
412-1 according to a specific embodiment of the present
invention.

[0039] Referring to the left side of FIG. 6, TED register
510 includes instruction register circuit 610 that monitors
instruction address (INST ADDR) information transmitted
on instruction bus 121, and data register circuit 620 that
monitors data addresses transmitted on data address (DATA
ADDR) bus 125 and data values transmitted on data value
bus 127. Note that in dual pipeline processors, an additional
instruction address bus associated with instructions passed
from the fetch stage, as well as from the write back stage, to
the decode stage on the second pipeline may also be moni-
tored by instruction registers 610 using known techniques.

[0040] Instruction register circuit 610 includes a first reg-
ister 611 for storing a first instruction address INST-ADDO
and an optional upper range instruction address INST-
ADDO-U. In a single-address operating mode, first register
611 asserts a pre-trigger signal PTO when an address trans-
mitted on instruction bus 121 matches instruction address
INST-ADDO (in this mode upper range address INST-
ADDO-U is empty or disabled). Alternatively, in a multiple-
address operating mode, first register 611 asserts pre-trigger
signal PT0 when an address transmitted on instruction bus
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121 falls within a range defined by instruction addresses
INST-ADDO and INST-ADDO-U. Similarly, instruction reg-
ister circuit 610 includes a second register 615 for storing a
second instruction address INST-ADD1 and an optional
upper range instruction address INST-ADD1-U, and gener-
ates a pre-trigger signal PT1 when an address transmitted on
instruction address bus 121 matches instruction address
INST-ADD1 (or falls within the range defined by INST-
ADD1 and INST-ADD1-U).

[0041] Similar to instruction register circuit 610, data
register circuit 620 includes a first register 621 for storing a
first data address DATA-ADDO and a first upper range
address DATA-ADDO-U, and a second register 625 for
storing a second data address DATA-ADDI1 and a second
upper range address DATA-ADD1-U. In addition, first reg-
ister 621 also stores a first data value DATA-VALO and an
optional first mask value MASKO, and second register 625
also stores a second data value DATA-VAL1 and an optional
second mask value MASKI1. Mask values MASKO and
MASKI1 facilitate masking a portion or all of data values
DATA-VALO and DATA-VALL, thereby causing data reg-
ister circuit 620 to operate in essentially the same manner as
instruction register 610 (described above). In particular, first
register 621 generates a pre-trigger signal PT2 when a data
address transmitted on data address bus 125 matches data
address DATA-ADDO (or falls within the range defined by
DATA-ADDO and DATA-ADDO-U), and second register
625 generates a pre-trigger signal PT3 when a data address
transmitted on data address bus 125 matches data address
DATA-ADDI (or falls within the range defined by DATA-
ADD1 and DATA-ADD1-U). Some or all of the data values
DATA-VALQ and DATA-VALL can also be included in these
comparison processes by associated use of mask values
MASKO and MASK1. For example, first register 621 can be
programmed to match a particular data address transmitted
on data address bus 125 and four bits of a data value
transmitted on data value bus 127 by storing the desired data
address as DATA-ADDO, storing the four bits in DATA-
VALDO, and setting mask value MASKO to mask all but these
four bits.

[0042] Referring to the right side of FIG. 6, the four
pre-trigger signals PTO through PT3 generated by TED
register 510 are transmitted to four 16-bit function genera-
tors (FGs) 630-1 through 630-3 of programmable trigger
logic circuit 520. 16-bit FGs 630-1 through 630-4 are
programmable combinational logic circuits that generate
intermediate (combinational) triggers CTO through CT3
according to programmed functions of pre-triggers PTO
through PT3. In other words, combinational triggers CTO
through CT3 can be expressed as:

[0043] CTO=f0 (PTO, PT1, PT2, PT3);
[0044] CT1=f1 (PTO, PT1, PT2, PT3);
[0045] CT2=f2 (PTO, PT1, PT2, PT3); and
[0046] CT3=f3 (PTO, PT1, PT2, PT3),

[0047] where 0, {1, f2, and f3 are any logical function of
PTO, PT1, PT2 and PT3. Combinational triggers CTO
through CT3 that are either passed to a programmable state
machine 640, or selectively converted by output switch
circuit 650 to generate triggers TEOQ through TE3. As dis-
cussed in additional detail below, programmable state
machine 640 is programmed to generate a sequential trigger
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signal ST when a programmed sequence of combinational
triggers is satisfied. When programmable state machine 640
is utilized, output switch circuit 650 generates an associated
trigger (e.g., TEO) in response to sequential trigger signal ST
(in this case, three unused triggers, e.g., TE1 through TE3,
are disabled or otherwise unused).

[0048] FIG. 7 is a simplified diagram depicting a 16-bit
sum-of-products circuit 700 that serves as 16-bit FG 630-1
according to a specific embodiment of the present invention.
In particular, SOP circuit 700 includes sixteen registers
REGO through REG1S that store an associated bit (i.e., 0 or
1). Each register is coupled to input terminals of a first set
of two-input MUXs, each designated M1, that are controlled
by pre-trigger PT3. The output terminals of MUXs M1 are
connected to input terminals of a second set of two-input
MUXs, each designated M2, that are controlled by pre-
trigger PT2. Similarly, the output terminals of MUXs M2 are
connected to input terminals of two-input MUXs M3, which
are controlled by pre-trigger PT1, and the output terminals
of MUXs M3 are connected to input terminals of two-input
MUX M4, which is controlled by pre-trigger PT0. By
storing appropriate values in registers REG0 through REG
15, 16-bit SOP circuit 700 is capable of implementing any
logical function of pre-trigger signals PTO through PT3. For
example, to define CTO=(PTO0 or PT1) and (PT2 or PT3),
then CTO would be TRUE (i.e. binary value 1) in all the
cases set forth in Table 1 (below):

TABLE 1
PT3 PT2 PT1 PTO REG
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

[0049] To assert combinational trigger signal CTO under
the conditions set forth in Table 1, a logic 1 is stored in each
register REGS through REG 7, REG 9 through REG11, and
REG13 through REG1S. One of these logic 1 values is, in
effect, passed from its associated register through the series
of MUXes shown in FIG. 7 when any of the combinations
of pre-triggers shown in Table 1 is satisfied. Those of
ordinary skill in the art will recognize that sum-of-products
circuits other than the specific arrangement shown in FIG.
7 can be used to provide a similar programmable function,
so SOP circuit 700 is therefore not intended to be limiting.

[0050] Referring briefly to FIG. 6, each of the combina-
tional trigger signals CTO through CT1 is applied to output
switch 650, and also to programmable state machine 640.

[0051] FIG. 8 is a finite state machine diagram represen-
tation depicting programmable state machine 640 according
to an embodiment of the present invention. State machine
640 includes four states: start point SP, first intermediate
point IP0, second intermediate point IP1, and end point EP.
Of course, state machine 640 can be implemented with any
arbitrary number of states. Each state is assigned a two-bit
code (i.e., having a value of zero to three) that identifies one
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of the four combinational trigger signals CT0 through CT3,
and passes control to an associated next sequential state
when the combinational trigger signal identified by the
stored two-bit code is asserted. For example, assuming start
point SP stores the two-bit code “00”, control is retained by
start point SP until combinational trigger signal CTO is
asserted, at which point control is passed on path 810 from
start point SP to first intermediate point [P0. Subsequently,
control is retained by first intermediate point IPO until a
combinational trigger signal matching the two-bit code
associated with first intermediate point IP0 is asserted, at
which point control is passed on path 820 from second
intermediate point IP0 to second intermediate point IP1.
Next, control is retained by second intermediate point IP1
until a combinational trigger signal matching the two-bit
code associated with second intermediate point IP1 is
asserted, at which point control is passed on path 830 from
second intermediate point IP1 to end point EP. Finally, after
control is passed to end point EP, control is retained until a
combinational trigger signal matching the two-bit code
associated with end point EP is asserted, at which point
sequential trigger signal ST is asserted (i.e., passed to output
switch 650; see FIG. 6), and control is returned on path 840
to start point EP.

[0052] If fewer than four states are desired, then end point
EP is loaded with the same two-bit code as the last state of
the dependency. For example, to generate sequential trigger
signal ST in response to a single state sequence (e.g., when
combinational trigger signal CT2 is asserted), then the
two-bit codes for SP, IP0, IP1, and EP should be loaded with
the digital values 2, 2, 2, and 2, respectively. This setting
results in the direct passage of control from start point SP to
end point EP along path 850 when combinational trigger
signal CT2 is asserted. Similarly, to generate sequential
trigger signal ST in response to the sequence of CT2
followed by CT1, the two-bit codes for SP, [P0, IP1, and EP
should be loaded with the digital values 2, 1, 1, and 1,
respectively. This setting results in the passage of control
from start point SP to first intermediate point IPO when
combinational trigger signal CT2 is asserted, and then the
passage of control from intermediate point IPO directly to
end point EP along path 860 when combinational trigger
signal CT1 is subsequently asserted. Finally, to generate
sequential trigger signal ST in response to the sequence of
CT2 followed by CT1 and CT1 followed CT3 (i.e., CT2-
>CT1->CT3), the two-bit codes for SP, IP0O, IP1, and EP
should be loaded with the digital values 2, 1, 3, and 3,
respectively.

[0053] Referring again to FIG. 6, output switch 650 is
user-programmed to generate a predetermined set of trigger
signals in response to corresponding combinational trigger
signals CTO through CT3 or in response to sequential trigger
signal ST. For example, output switch 650 may be pro-
grammed to generate trigger TEQ in response to combina-
tional trigger signal CTO, with trigger TEO including an
action ID associated with a “CPU halt” breakpoint trigger
operation. Alternatively, output switch 650 may be pro-
grammed to generate trigger TE( in response to sequential
trigger signal ST, with trigger TE(Q including an action ID
associated with an “enable data trace” watchpoint trigger
operation. The thus-generated triggers are then passed to
action generator 420 (see FIG. 4) in the manner described
above.
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[0054] Referring back to FIG. 3, the TRACE-EN/DIS
control signal generated by OCDS circuit 140 selectively
opens and closes switch 315, thereby allowing a developer
to selectively control the number of trace information words
passed to second trace filter 320 based on a wide range of
trigger events, both combinational and sequential. Accord-
ingly, the present invention facilitates the development of a
software program by allowing the user to limit the amount
of trace information passed to output buffer 157 (FIG. 1),
thereby avoiding the buffer over-run problems associated
with conventional trace control circuits.

[0055] Referring to the right side of FIG. 3, second trace
filter 320 includes separate switch circuits 322, 324, and 326
that are controlled by one or more TRACE MODE control
signals to pass/block selected portions of trace information
transmitted on intermediate buses 121-T1, 125-T1 and 127-
T1. According to another aspect of the present invention,
second trace filter 320 facilitates further control over trace
operations by allowing the user/developer to selectively
block portions of the trace operation words passed by switch
315, thereby further limiting the amount of data passing
through output buffer 157 (FIG. 1). For example, one or
more TRACE MODE control signals may be set to pass only
program trace information (i.e., to prevent the passage of
data address and data value information from being passed
to output busses 125-T2 and 127-T2, respectively), or to
pass only data trace information (i.e., to prevent the passage
of program trace information from being passed to output
bus 121-T2). Further, program and data trace information
may be passed/blocked based on the type of instruction
executed, as determined by the identification information
provided with each program trace word. For example,
TRACE MODE control signals may be set to trace only
store instruction operations. Accordingly, second trace filter
320 can be used to further limit the amount of data passed
to compression circuit 155 (see FIGS. 1 and 2).

[0056] Compression Circuit

[0057] Referring again to FIG. 2, compression circuit 155
receives the filtered trace information passed by config-
urable filter circuit 152 on filter output busses 121-T2,
125-T2, and 127-T2, compresses the filtered trace informa-
tion, and then passes the compressed trace information to
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address identification bus 224. The compressed program
trace bytes and 3-bit program identification codes are simul-
taneously written into program FIFO 230 at the core fre-
quency. According to another aspect of the present inven-
tion, program compression circuit 220 and data compression
circuit 225 further facilitate highly flexible trace operations
during the development of a software program by further
limiting the amount of trace information passed to the output
buffer of the trace port using the compression techniques
described below.

[0058] FIG. 9 is a simplified block diagram showing
program compression circuit 220 in additional detail accord-
ing to a specific embodiment of the present invention. In
general, program compression circuit 220 includes instruc-
tion identification generator 910 for generating the 8-bit
compressed program trace bytes transmitted on program
address bus 222, and an instruction byte code generator 920
for generating the corresponding 3-bit identification codes
transmitted on program address identification bus 224.

[0059] Referring to the upper portion FIG. 9, instruction
identification generator 910 can be functionally represented
by a count value byte generator 912, a branch identification
generator 914, and a program counter byte generator 916.
Count value byte generator 912 calculates the number of
instructions executed by core 110 (FIG. 1) between a
currently traced instruction and a previously traced instruc-
tion, and generates an 8-bit binary count value indicating the
difference. Branch identification generator 914 generates an
8-bit message when an indirect branch has been executed
and taken. Program counter byte generator 916 transmits the
32-bit program counter address associated with the currently
executed instruction in three sequential bytes (least signifi-
cant byte first).

[0060] Referring to the bottom of FIG. 9, instruction byte
code generator 920 generates 3-bit codes identifying each
byte transmitted from instruction identification generator
910. In one embodiment, an additional one-bit signal is
utilized to identify multi-threaded activity (i.e., in multi-
threaded processors). Table 2 (below) lists exemplary pro-
gram identification (PID) codes and a description of the
associated program trace byte transmitted with each PID
code.

TABLE 2

PID ID CODE DESCRIPTION

PROGRAM TRACE BYTE

000 DEFAULT STATE
001 MULTI-BYTE TRACE
010 PROG TRACE DIRECT BRANCH
011 PROG TRACE
INDIRECT BRANCH
100 PROG COUNTER SYNCH CODE
101 NOT USED
110 TRACE LOST
111 NOT USED

UNSPECIFIED

PROGRAM TRACE MESSAGE

8-BIT INSTR COUNT VALUE

8-BIT INSTR COUNT VALUE + UNIQUE
PROG COUNTER VALUE

32-BIT PROG CNTR VALUE

NONE

NONE

NONE

output buffer 157. In particular, program compression circuit
220 receives up to 32+bits of program (instruction) trace
information from switch circuit 322 (see FIG. 3) at core
frequency, and generates one or more compressed program
trace bytes on a program address bus 222, and one or more
corresponding 3-bit identification codes on a program

[0061] FIGS. 10(A) through 10(C) are diagrams depicting
exemplary transmissions from program address bus 222 and
program address identification bus 224.

[0062] FIG. 10(A) depicts a direct branch program trace
transmission, which is generated each time a discontinuity in
the program flow occurs. The direct branch program trace






