US006076159A

United States Patent [(1] Patent Number: 6,076,159
Fleck et al. 451 Date of Patent: Jun. 13, 2000
[54] EXECUTION OF A LLOOP INSTRUCTING IN 5,163,139 11/1992 Haigh et al. ..o 712/206
A LOOP PIPELINE AFTER DETECTION OF 5,404,469 4/1995 Chung et al. coccovevererercreccrccnne 395/375
A FIRST OCCURRENCE OF THE LOOP 5,546,593 8/1996 Kimura et al.oceeveerverrereennene 395/800
INSTRUCTION IN AN INTEGER PIPELINE 5,560,028 9/1996 Sachs et al. 395/800
o) FOREIGN PATENT DOCUMENTS
[75] Inventors: Rod G. Fleck, Mountain View, Calif.;
Ole H. Moller, Lyngby, Denmark; Gigy 0473 420 A2 4/1992 European Pat. Off. .
Baror, Ramat Gan, Israel OTHER PUBLICATIONS
[73] Assignee: Siemens Aktiengesellschaft, Munich, Love, Carl E. et al, “An Investigation of Static Versus
Germany Dynamic Scheduling”, CH2887-8/90/0000/0192, 1990
IEEE 192-201.
[21] Appl. No.: 08/928,766 Primary Examiner—John A. Follansbee
[22] Filed: Sep. 12, 1997 [57] ABSTRACT
[51] Int. CL7 oo GO6F 9/00 A data processor is disclosed which comprises a first pipe-
[52] US.CL .. 712/241; 712/213; 712/23 line for decoding and executing data instructions, a second
[58] Field of Search 395/800.23, 800.24, pipeline for decoding and executing address instructions, a
395/391, 389, 712/23, 24, 213, 215, 206, unit for issuing multiple instructions to the pipelines, a first
241 set of registers being coupled with the first pipeline, and a
. second set of registers being coupled with the second
[56] References Cited pipeline, wherein first and second pipeline process data in
U.S. PATENT DOCUMENTS parallel.
4,967,339 10/1990 Fukumaru et al.cccveee... 712/210 15 Claims, 8 Drawing Sheets
CACHE SUBSYSTEM 13
Y
) 3
\J PC UPDATE > 1
AND CONTROL LOOP CACHE /BTB Ve
] Y I
[ToZ==—-=—-7
. Loop |4
| | EXECUTION | |
!
| LOOP PIPE i
Y
\ MUX /\ 5
S
—» PRE-DECODE |
L v (7
INSTRUCTION DEMUX
8
(| | 9
PRO;EgTION ISSUE
CONTROL
X
10 11 1
L
:|10a|:|11a|iiL12a1:
I ! 14
M I | h | y /
ADDRESS DPIACCESS | JEILE Y | TPIPELINE
BLDIRECT poRT | Lo LT, | CONTROL
PORT e fog e J e]
| | 1 1
! I '] LSpipg | 1LOOP PIPE|

U.S. Patent Jun. 13, 2000 Sheet 1 of 8 6,076,159
DATA ADDRESS
ReGISTER | % REGISTER [200
FILE FILE
| 7
INSTRUCTION FETCH
Y y 10 12
Y Y
Hla~{_| 10a |
DECODE DECODE
Y Y Y
11b 10b 12a
| EXECUTE | EXECUTE | EXECUTE
Y A4 Y
11¢c ~ 10¢ 12¢
" WRITE BACK ™ WRITE BACK] WRITE BACK
FiIlls_ 1
21 20
(
INSTRUCTION
BIT 31 0

F Ila_ ==

U.S. Patent Jun. 13, 2000 Sheet 2 of 8 6,076,159

| CACHE SUBSYSTEM ~13
A
2 Y 3
| PC UPDATE > i
AND CONTROL L= LOOP CACHE / BTB -
A I |
[_ Rt
| Loop [}
| EXECUTION |~ |
|
| LOOP PIPE l
e e e e e e e — i
Y Y
\ MUX /\ 5
5~
> PRE-DECODE |«
- 7
> INSTRUCTION DEMUX |«
8
y { l (9
PROTECTION SSUE
REG. CONTROL
10 A
11 11
- _f_] - ___(_l - ___/_11
[10a | [V[12a |
| 0 D e o | 1
| | Y
ADDRESS ~ DPIACCESS | L1 [ty (10 1! | TPPELINE
BI-DIRECT [N N G o i B |
PORT | | N CONTROL
PORT | 10c : | i1¢ : : 12¢ :
' | [[
IPIPE || LSpipE | 1LOOP PIPE |
I R e el e o —— 4

U.S. Patent

Jun. 13, 2000 Sheet 3 of 8 6,076,159
i 180
MEMORY SUBSYSTEM
A) A X 150
Y 4 Y Y
ADDRESS LOAD / STORE DATA LOAD / STORE
BUFFERS BUFFERS
A A A A (600 A A A A (900 A
(400 100
ADDRESS DATA
GENERAL GENERAL
s PURPOSE PURPOSE
200 REGISTERS REGISTERS
300
A]
130 1L 500 800 wl{] 140
Y ¥ (Y) A A Y A (\ AR Y A
ADDRESS FORWARDING > DATA FORWARDING
A A A
/V
160 y y y ¥ Y Y y 170
120 - LOAD / STORE PIPELINE | INTEGER PIPELINE ~ 110

- Il= ‘&

U.S. Patent Jun. 13, 2000 Sheet 4 of 8 6,076,159

600 — 19 123 121 122

108~ 109
106 7\ X
107
i1 (01 | 102 | o108 | 104 195
LDB ste| |stB| |stB] |sTB LDB
118 l
112 1
1] 11 ~
NC ’
P ? 116 N
L 113 3y
N

43 44 45 46

Fils =/t

922 923
/920 QQL \—l
918 A 919
bt 915 /914
916) 917 R
3\/ -\ MSK .| ALGN
1
o (909 | 010 [911 [912 013
L8 ste| |stB| |sTB| |STB e
902 % ¢
N
L 9
ﬁ)lj‘ 906 ~ 1
/7 ™ T
924 | N gogl’(| 907}
901 N NN ﬁ ™~

U.S. Patent Jun. 13, 2000 Sheet 5 of 8 6,076,159

. R
. R
d4 » R do
WR |
WA l
. R
o R
d5 . R di
wR |
W/R !
s |y . -
. Ak s .
. |72 |76
|73 L 1yt
di2 | | ds
di3 d9
. R
. R
di4 + R d10
W/R .
W/R .
¢ R
° R
d15 + R d11
wWR |
W/R T

 Sal B -] b=

U.S. Patent Jun. 13, 2000 Sheet 6 of 8 6,076,159

. W/R
R R
ad - B a0
W/R)
W/R -
. W/R
It R
a5 * R al
WR |
W/R)i
at a2
43
a7 42 a3
. |/ A1 = 44
|/ 40 = 45
: », L | 46
al2) a8
al3 a9
L W/R
e B
al4 ¢ R at0
W/R
W/R
)i W/R
. R
R
al (e alil
WR |
W/R T

Hill= =D

U.S. Patent

527

42

/

501

41

502

/XE NI AVERN

N

Jun. 13, 2000 Sheet 7 of 8 6,076,159

40 121 122 43 44 45 46

503~ 518 | 919 \ \

¢ + | 516| 517 520 | 521
= 1|7 AN
2 mAEEA
505>/ (515

N swB L-514 [we

524

525

526 622 523

- EFIls_ Ta kS

U.S. Patent Jun. 13, 2000 Sheet 8 of 8 6,076,159

70 71 72 73 924 901 4 75 76 77

DYV Y ONY PP Y

VRN .

807 | 808 (809 (810 |, L] o) 95 o] Joas] as
<] g AR 2 AU A

812

]
5

X
[

|
=
@©
=
@

kﬁ
4
Y

oo
e
(o]

ZX

800~

L 4
Zﬁ 1
.

X
I

)

L 4
(e 0]
no
(e

I

N+

L

Ioo
}{B
‘1

[eo}
[N
w

r
N/
T
!

Iocz
&,
.

&
|
ik

™ RN R
806 |802 | 803 [804

o0}
()
o

842 801

L Il= =

6,076,159

1

EXECUTION OF A LOOP INSTRUCTING IN
A LOOP PIPELINE AFTER DETECTION OF
A FIRST OCCURRENCE OF THE LOOP
INSTRUCTION IN AN INTEGER PIPELINE

BACKGROUND OF THE INVENTION

The present invention relates to a data processor and, in
particular, to a central processing unit (CPU) such as a
microcomputer or microcontroller. Microcontrollers are
well known in the art, and a large variety of such devices
from low end devices (e.g., a %-bit controller) to high end
devices (e.g., a 32-bit controller) are available. High end
controllers are used in almost any kind of electronic devices,
such as laser printers and hard disks or for controlling any
kind of processes, for example, in automobiles, etc.

With more complex tasks to be solved, the demand for
very fast, high end controllers is rising. In particular, such
devices are necessary to control real time applications. In
such applications, it is necessary to process data very fast. It
is known in the art of microcomputers and microcontrollers
to use the so called pipeline technique to speed up data
processing. It is also known to use multiple pipelines in
parallel to process data even faster.

A highly parallel and pipelined computer processor, for
example, is a very long instruction word (VLIW) processor
as disclosed in U.S. Pat. No. 5,450,556. Such a VLIW
processor has a plurality of arithmetic and logic units which
process instruction in parallel to speed up the operation of
the computer. Therefore, a multi-port register file is con-
nected to a plurality of units as shown in FIG. 1 of the above
mentioned disclosure. To process all instructions which are
issued in parallel to the respective units correctly a number
of precautions, for example dependency checks, completion
analysis, resource checks, etc., have to be taken. In VLIW
machines, these precautions are mostly shifted to the soft-
ware side, and they produce lots of code size due to their
hardware concept.

Another example for high speed microprocessors or
microcontrollers are superscalar machines. Their multiple
pipeline design requires, for example a dependency analysis
to assure whether instructions issued in parallel are depen-
dent on each other. Also, so called register renaming might
be necessary if two instructions read from to the same
register. To get the optimal performance it is often necessary
to execute instructions out of order, which has to be checked
in order not to violate a program order. To support instruc-
tion look ahead and internal data forwarding, which are
needed to schedule instructions through the multiple pipe-
lines simultaneously so called reservation stations and reor-
der buffers are necessary. All these precautions and others
result in an either very complicate structure including addi-
tional hardware and/or in compilers which are able to
analyze a program and issue the respective optimized assem-
bler code. These precautions are cumbersome and increase
the price of a microcontroller and/or its tools.

SUMMARY OF THE INVENTION

Therefore, it is an object of the present invention to
provide a data processor with the capability of very fast
execution without the necessity every precaution mentioned
above.

This object is accomplished by a data processor which
comprises a first pipeline for decoding and executing data
instructions, a second pipeline for decoding and executing
address instructions, a unit for issuing multiple instructions
to said pipelines, a first set of registers being coupled with

10

15

20

25

30

35

40

45

50

55

60

65

2

said first pipeline, and a second set of registers being
coupled with said second pipeline, wherein first and second
pipeline process data in parallel.

It is further an object of the present invention to provide
a method of executing instructions with a data processor
with the capability of very fast execution.

This is achieved by a method of executing multiple
instructions with a data processor comprising a first pipeline
for decoding and executing data instructions, a second
pipeline for decoding and executing address instructions, a
unit for issuing multiple instructions to said pipelines, and a
first set of registers being coupled with said first pipeline and
a second set of registers being coupled with said second
pipeline whereby the method comprises the steps of:

analyzing the instruction stream by means of the issue
unit,

issuing for each pipeline one instruction in parallel only if
a predefined order of the instruction stream is given
whereby each pipeline receives an associated instruc-
tion from the instruction stream,

otherwise issuing a no operation instruction to the respec-
tive other pipeline, and

executing said instructions being issued to said pipelines

in parallel.

In a further embodiment the data processor according to
the invention comprises a third pipeline which is capable of
executing a loop instruction in parallel with the other two
pipeline units.

The data processor and the method of executing multiple
instructions require only a minimized dependency analysis.
Renaming of registers is not necessary. Also, no out of order
execution is provided. By providing a primary decoding of
any instruction by its most significant bit, a quick distribu-
tion of the instructions to the respective pipelines is possible.
By providing synchronized pipeline units the expense of
hardware for controlling the pipelines is further minimized.
Therefore, an arrangement according to the present inven-
tion is ideal for a digital signal processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a basic block diagram of a superscalar
pipeline structure according to the present invention,

FIG. 2 shows a basic instruction word,

FIG. 3 shows a functional block diagram of a pipeline
structure according to FIG. 1,

FIG. 4 shows a basic diagram of a register file connected
to a memory unit and the pipeline structure, and

FIGS. 5A to 5F shows an embodiment of the register file
of FIG. 4 in more detail.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shows a basic diagram of the pipeline system
according to a preferred embodiment of a super-scalar 32 bit
microcontroller. Three pipelines 10, 11, and 12 are provided.
The basic two pipelines are pipeline 10 which handles
address instructions and pipeline 11 which handles data
instructions. Address instruction primarily use the address
register file and most of the instructions are load/store
instructions. Data instructions primarily use the data register
file and most of these instructions are integer instructions. As
some instructions use either data or address registers or no
register at all, for example call, return, and jump
instructions, they can be executed in either pipeline unit. A

6,076,159

3

third pipeline 12 handles only one kind of load/store
instructions, namely loop instructions. Pipelines 10 and 11
each comprise a decode stage 10a and 11, respectively, an
execute stage 10b and 115, respectively and a write back
stage 10c and 1lc, respectively. The third pipeline comprises
only an execute stage 12a and a write back stage 12¢. The
loop pipeline 12 can of course comprise three stages like the
other pipelines, but in this embodiment such additional
hardware is not necessary as will be explained below. An
address register file 200 is coupled to the load/store pipeline
10 and to the loop pipeline 12, whereas a data register file
300 is coupled to integer pipeline 11. For a better overview
buffer registers and address as well as data forwarding
registers and their connection are not shown in FIG. 1. They
will be explained in more detail below. A instruction fetch
unit 7 provides the pipelines 10, 11, and 12 with the
respective instructions.

FIG. 2 shows an overview of an instruction word which
has a bit width of 32 bits. The instruction proper is contained
in the main body comprising bits 0 to 30, whereas bit 31,
indicated by numeral 21, indicates the kind of the instruc-
tion. Of course, any of the 32 bits of the instruction word
could be used as an indicator. In this embodiment two
different kind of instructions can be executed in two different
pipelines, namely a load/store instruction in pipeline 10 and
a integer instruction in pipeline 11. The pre-decoder and
instruction issue units can distinguish these instruction sim-
ply by evaluating the most significant bit 21 of each instruc-
tion word.

FIG. 3 shows the pipeline structure of FIG. 1 in more
detail. It also shows main parts of the control logic which are
essential for the operation of the pipelines. For a better
overview, FIG. 3 shows only the main connections between
these main units. Same numerals indicate the same units. In
the preferred embodiment, this instruction fetch module 1
comprises the three pipeline units 10, 11 and 12 according
to FIG. 1. However, the microprocessor may have only one
main pipeline which includes a plurality of sub-pipelines.
Also, the present invention is not limited to a certain number
of pipeline stages.

An instruction demultiplexer 7, representing the instruc-
tion providing/issuing unit, provides the different pipeline
units 10, 11 and 12 with their respective instructions. This
instruction demultiplexer 7 is controlled by an issue control
unit 9 which is coupled to a pipeline control unit 14. The
instruction demultiplexer 7 is coupled to the output of a
multiplexer 5 which either forwards an instruction from a
cache subsystem 13 or from a loop cache buffer unit 3. The
loop cache buffer unit 3 is coupled to a program control
update and control unit 2 which is also coupled to the cache
subsystem 13. As part of the loop pipeline 12, a loop
execution unit 4 is on one hand coupled to the program
counter update and control unit 2 and on the other hand to
the loop cache buffer 3. The loop cache buffer 3 can also
contain a branch target buffer (BTB). The output of the
multiplexer 5 is connected to an input of a pre-decoder 6
which has an output which is connected to the instruction
demultiplexer 7. Furthermore, the pre-decoder 6 is coupled
to the program counter update and control unit 2. A protec-
tion register 8 is coupled to the program counter update and
control unit 2 and to the three pipelines 10, 11 and 12. This
unit 1 is responsible for feeding instructions to the different
pipelines 10, 11 and 12. The main pipelines 10 and 11 of this
embodiment have four stages. The first stage is formed by
the instruction demultiplexer 7, the pre-decoder 6 and the
logic connecting the pipelines 10, 11 and 12 with the cache
subsystem 13. This stage is generally referred to as the fetch

10

15

20

25

30

35

40

45

50

55

60

65

4

stage which issues the instructions to the respective main
pipelines 10 and 11. The second stage is depicted by the
units 10a and 11a and referred to as the decode stage where
the instructions are decoded. The third stage is depicted by
units 105 and 115 and referred to as the execute stage where
the instructions are executed. In other words, the operation
proper is performed by, for example, calculation of an
address in a load/store instruction, or performing a multi-
plication. The fourth stage is depicted by units 10¢ and 11c
and referred to as the write back stage where the results of
the respective operation is written back to, for example, the
register file or a memory location.

For a better overview, FIG. 3 does not show the connec-
tion between the pipelines and the register file respectively
the memory sub-system. The following FIGS. 4 and SA to
5F show how the register files are coupled to the pipelines.

FIG. 4 shows an overview of the general purpose register
file of a 32 bit microcontroller and its connections to a
memory sub-system and the integer and the load/store
pipelines according to an preferred embodiment. The gen-
eral purpose register file 100 comprises an address register
file 200 and a data register file 300 that contain a plurality
of address and data registers 400, 700 with a predetermined
bit width and buffers 500, 600, 800, 900. In the preferred
embodiment the register bit width is 32 bits, and the number
of registers is 16. This bit width can be any bit size according
to the specification of the respective microcontroller, micro-
processor or data handling unit.

On the one hand, the address registers 400 are connected
via a bus 130 to an address forward unit 500 and on the other
hand to address load and store buffer 600. Further, the data
register file 100 contains a plurality of data registers 700, for
example, 16 data registers with a bit width of 32 bit. A
second bus 140 is provided which connects the data registers
700 on the one hand to data load and store buffers 900 and
on the other hand to data forward unit 800. The general
purpose register file 100 is on the one hand connected to a
data memory unit 180 through a third bus 150 and on the
other hand to additional buses 160, 170. Bus 160 connects
the address forward buffers 500 and parts of the data forward
bufters 800 to a load/store pipeline unit 120 comprising, for
example, an address arithmetic unit and an instruction fetch
unit (IFU). Bus 170 connects the data forward buffers §00 to
anunit 110 comprising, for example, a multiply accumulator
(MAC) and an integer execution unit. Additional buses
160A and 170A connect the address register file with bus
170 and the integer pipeline and the data register file with
bus 160 and the load/store pipeline. These buses 160A and
170A can be used to transfer the content of data registers or
a result of the integer pipeline to any address register in the
address register file 200 or the content of an address register
or a result of the load/store pipeline to anyone of the data
registers in the data register file 300 and vice versa. Usually
one of these busses, for example bus 170A, is sufficient and
the other one can be omitted.

FIGS. 5A through 5F depict an embodiment of a register
file 100 showing the elements in more detail. Only one bit
of each register d0 . . . d15, a0 . . . al5 is shown in this
diagram. The other 31 bits of the register d0 . . . d15,
a0 . .. alS5 are arranged in parallel. Throughout the FIGS. 5A
to SF the same numerals represent the same elements.

FIG. 5D shows registers in an address register file. For a
better overview, registers a2 to al3 are not shown in FIG.
5D. Every address register a0, . . . al5 of the address register
file 400 has two unidirectional outputs for reading and three
bidirectional I/O-ports. One internal bus line 40 is connected

6,076,159

5

to the first bidirectional I/O-port of all address registers
a0, . . . al5, and two lines 41 and 42 are connected to the
respective two outputs of all address registers a0, . . . al5.
Further, two internal bus lines 44 and 46 are connected to
respective I/O-ports of all even address registers a0, a2,
a4 . . . al4. Two more lines 43 and 45 which are connected
to the I/O-ports of all odd address registers al, a3, a5 . .. al5.

FIG. 5A shows the address load and store buffer 600 of
FIG. 1 in detail. Bus lines 43 to 46 connect to the respective
inputs of store buffers 101 to 104. The outputs of store
buffers 101 to 104 are connected to memory bus lines 119,
121,122, and 123 through drivers 106 to 109. All drivers are
tri-state drivers which are provided with a control input for
selective activation by means of a control unit (not shown).
Two blocks 117 and 105 indicate 4 load buffers which are
connected on the one hand to the memory bus lines 119,
121,122, and 123 and on the other hand through drivers 118,
111, 112, and 113 to the internal bus lines 43 to 46. In
addition, the outputs of the load buffer 105 are connected
through buffers 115 and 116 to the internal bus lines 43 and
44.

FIG. SE shows the address forward unit 500 of FIG. 4 in
detail. Bus lines 40, 41 and 42 are connected to address
forward output bus lines 524, 525 and 526 through drivers
527, 501 and 502, respectively. Two memory bus lines 121
and 122 are each connected to the input of three drivers 503,
504, 505 and 506, 507, 508. The outputs of drivers 503 and
506 connect to bus line 526, the outputs of drivers 504 and
507 to bus line 525 and the outputs of drivers 505 and 508
to bus line 524. Internal bus lines 43 and 44 are connected
to the outputs of two drivers 518 and 519, respectively. The
inputs of drivers 518 and 519 are connected to the output of
a write-back buffer 515 the input of which is connected to an
address forward bus input line 523. Two other drivers 516
and 517 are provided the output of which are coupled with
the internal bus line 40. The input of driver 517 is connected
to the output of buffer 515. The input of driver 516 is
connected to the output of buffer 514 the input of which is
connected to address forward bus input line 522. Bus lines
45 and 46 are also connected to bus lines 522 and 523
through bidirectional drivers 520 and 521, respectively. The
signal on bus line 523 is also fed to the inputs of three drivers
509, 510 and 511 the outputs of which are connected to bus
lines 524, 525 and 526, respectively. The signal on bus line
522 is also fed to the inputs of two drivers 512 and 513 the
outputs of which are connected to bus lines 524 and 525,
respectively. Again, all drivers are tri-state drivers which are
provided with a control input for selecting by means of a
control unit (not shown). The three units 400, 500 and 600,
according to FIG. 4, show the path of the address signals into
and out of the address register file, whereby bus lines 119 to
122, according to FIG. SA, connect to the memory unit 180
and bus lines 522 to 524 to the address arithmetic pipe and
the instruction forward unit 120.

FIG. 5C shows data registers in a data register file. Again,
for a better overview, registers d2 to d13 are not shown in
FIG. 5C. Every data register d0, . . . d15 of the data register
file 500 has three unidirectional outputs for reading and two
bidirectional I/O-ports. Two lines 72 and 73 are connected to
the first two outputs of all data registers d0, . . . dl15,
respectively. Further, an internal bus lines 71 is connected to
respective outputs of all even data registers d0, d2, d4 . . .
d14, whereas an internal bus line 70 is connected to respec-
tive outputs of all odd registers d1, d3, . . . d15. Two more
lines 74 and 76 are connected to the I/O-ports of all odd
address registers d1, d3, d5 . . . d15. Finally, two other lines
75 and 77 are connected to the I/O-ports of all even address
registers d0, d2, d4 . . . d14.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 5B shows the data load and store buffer 900 of FIG.
4. Internal bus lines 74 to 77 are coupled to the inputs of four
store buffers 909 to 912, respectively. The output of store
buffer 909 is coupled to a memory bus line 921 through a
driver 916, and the output of store buffer 910 is coupled to
a memory bus line 920 through driver 917. The outputs of
buffers 911 and 912 are connected to two input terminals of
a mask unit 915. Mask unit 915 is provided with two input
and two output terminals. The two output terminals of the
mask unit 915 are coupled to two memory bus lines 922 and
923 through drivers 918 and 919, respectively. Two blocks
908 and 913 depict four load buffers. Block 913 is provided
with two input terminals which are connected to two internal
bus lines 924 and 901, respectively and to the memory bus
lines 922 and 923 through an align block 914. The align
block 914 is provided with two inputs which are connected
to the inputs of mask unit 915 and the outputs of the store
buffer 913, respectively. Furthermore, one output of load
buffer 913 is coupled to internal bus lines 74 and 76 through
respective drivers 904 and 906. The other output of load
buffer 913 is coupled to internal bus lines 75 and 77 through
drivers 905 and 907. The second load buffer 908 is con-
nected on its input side to memory bus lines 920 and 921,
respectively and on its output side to internal bus lines 74
and 75 through drivers 902 and 903, respectively. Again, all
drivers are tri-state drivers which are provided with a control
input for selecting by means of a control unit (not shown).

FIG. 5F shows data forward unit 800 of FIG. 4 in detail.
Internal bus lines 70 to 73 are coupled with the data forward
bus lines 802 to 805 through drivers 807 to 810. An
additional data forward bus line 806 is connected to output
terminals of drivers 827 and 828 the input terminals of
which are connected to bus lines 802 and 803, respectively.
Bus line 806 is part of the bus 170A, according to FIG. 4,
which is connected to the load/store pipeline 120 to build a
coupling between address register file 200 and data register
file 300. Bus 160A is not implemented in this embodiment.
Bus line 924 is connected to the inputs of three drivers 811,
812 and 813 the outputs of which are connected to bus lines
805, 804 and 802, respectively. Bus line 901 is connected to
the inputs of three drivers 814, 815 and 816 the outputs of
which are connected to bus lines 805, 804 and 803, respec-
tively. Two other data forward bus lines 842 and 801 are
provided which are coupled to the input terminals of two
write-back buffers 829 and 830, respectively. The output
terminals of buffers 829 and 830 are coupled to bus lines 74
and 75 through drivers 832 and 834, respectively. In
addition, the output of buffer 830 is coupled to bus line 74
through a driver 833. Bus line 842 is coupled to bus line 76
through driver 835, and bus line 801 is also coupled to bus
lines 76 and 77 through drivers 836 and 837, respectively.
Also, bus line 806 is coupled to bus lines 76 and 77 through
drivers 840 and 841, respectively. Furthermore, bus line 806
is connected to the input terminal of a further write-back
buffer 831 the output of which is coupled to bus lines 76 and
77 through drivers 838 and 839, respectively. Also, bus line
806 is coupled to bus lines 802 to 805 through drivers 817
to 820, respectively. Finally, bus line 842 is coupled to bus
lines 805, 804 and 802 through drivers 821 to 823, respec-
tively and bus line 801 is coupled to bus lines 803 to 805
through drivers 824 to 826, respectively. Again, all drivers
are tri-state drivers which are provided with a control input
for selecting by means of a control unit (not shown). The
memory bus lines 119 to 122, according to FIG. 5A, and 920
to 923, according to FIG. 5B, form the memory bus 150 of
FIG. 4. The bus lines 522 to 526, according to FIG. 5E, and
806 form bus 160 and bus lines 842 and 801 to 805 form bus
170 of FIG. 4.

6,076,159

7

The 32 bit microprocessor in this preferred embodiment
contains two major pipelines 10 and 11. The first data
pipeline 11 deals with the data arithmetic instructions, the
multiply accumulator operations, the data conditional
jumps, and the system instructions. The second address
pipeline 10 deals with address arithmetic instructions, loads,
stores, unconditional jumps, address conditional jumps,
calls, returns, and loops. The core is capable of issuing one
instruction into the decode stage 10z and 1la of each
pipeline 10 and 11 per cycle. However, in this embodiment,
this is constrained by resource constrains such as two back
to back arithmetic instructions will be issued on separate
cycles and an instruction which is issued to the load store
pipeline 10 may only be issued on its own or as the second
of a pair. If only one instruction can be issued then a no
operation instruction is issued to the other pipeline. This
allows a much less cumbersome architecture of the core of
a microprocessor, whereby a software compiler can optimize
code on a simple basis. In other words, only parts of the
intelligence of the system are integrated in the hardware the
other parts are transferred to the software compiler.

For example, an instruction stream which has not been
optimized is assumed to be:

add ;instruction il

add ;instruction i2

Id ;instruction 11

Id ;instruction 12

sub ;instruction i3
whereby ‘add’ stands for an addition instruction, ‘Id’ stands
for a load instruction, and ‘sub’ stands for a subtraction
instruction. For a better overview, no instruction parameters

are shown in this example. Such an instruction stream would
result in an execution as shown below in Table 1:

TABLE 1
CYCLE 1 2 3 4 5 6 7
INTEGER PIPE
Decode 11a il i2 — i3
Execute 11b il i2 — i3
Writeback 11¢ il i2 — i3
LOAD/STORE PIPE
Decode 10a — 11 12
Execute 10b — 11 12

Writeback 10c — 11 12

In this table, a ‘-’ stands for a no operation instruction. As
can be seen, only instruction i2 and 11 can be issued in
parallel to the both pipelines, because this sequence meets
the above constraints. All other instructions are issued either
to the integer pipeline 11 or the load/store pipeline 10. In
general with the above described hardware, to allow mul-
tiple instruction issue, a load/store instruction must follow
an integer instruction.

The preferred embodiment according to the present inven-
tion provides furthermore a third minor pipeline 12 on the
load/store side which is used to handle the zero overhead
loops. This pipeline 12 is used to fold out the loops from the
execution flow allowing a loop operation to be performed in
parallel with an integer and load/store operation. The loop
pipeline 12 has no dedicated fetch stage associated with it.
When a new loop is encountered the first time the loop
instruction is fetched and issued to the load/store pipeline.
During this first time the loop instruction is executed and the
loop cache buffer 3 is set up with the loop target address and

10

15

20

25

30

35

40

45

50

55

60

65

8

the loop detection address which is preferably the address of
the instruction executed before the loop instruction proper.
In later iterations this loop detection address will be com-
pared by the loop cache with the current program counter in
unit 2. On subsequent loop iterations the a loop instruction
is detected by the loop cache buffer 3 and is executed in the
loop execution unit 4 of the execute stage 12¢ of the loop
pipeline 12. Therefore, while executing loops, a maximum
of three instructions can be executed at the same time.

While this embodiment allows efficiently parallel
execution, some restrictions apply to the embodiment
described above. Pipeline stalls, data dependencies and
pipeline interlocking are all handled in the decode stages of
the two major pipelines 10 and 11. Each pipeline 10 and 11
can be in one of the following states during the current
decode cycle: (a) normal, (b)cancel, (c) inject, (d) cancel and
re-inject, (e) re-inject, (f) cancel and inject, and (g) hold.

These states (a) to (f) will be explained below:

(a) During a normal state, the current instruction in
decode is issued to the execute stage and the next instruction
from fetch is taken into the decode stage on the following
cycle.

(b) During the cancel state, the instruction in the decode
stage is aborted and a no operation instruction is issued to
the execute stage. The next instruction from the instruction
fetch is taken into the decode stage on the following cycle.

(¢) During the inject state, the current instruction in the
decode stage is issued to the execute stage and a new
instruction is injected into the decode stage on the following
cycle. The instructions which can be injected into the
pipeline is dependent on the pipeline. Generally, only no
operation instructions can be injected except a so called
interrupt pseudo instruction and a exception pseudo instruc-
tion.

(d) During a cancel and inject state, the current instruction
in the decode stage is aborted and a no operation is issued
to the execute stage. A new instruction is injected into the
decode stage on the following cycle, see the inject case
above.

(e) During the re-inject state, the pipeline uses the instruc-
tion re-injection mechanism to handle multi cycle instruc-
tions. This involves the multi cycle instruction being
detected in the decode stage. The instruction is re-injected
into the decode stage of the pipeline on the following n
cycles where n is dependent on the number of cycles the
instruction takes.

(f) During the cancel and re-inject state, the current
instruction in the decode stage is recycled and a no operation
instruction is issued to the execute stage. In this
embodiment, this is the procedure how a pipeline stall is
implemented.

(g) During the hold state, the current instruction in decode
will be repeated.

The conditions which determine which state a pipeline is
in is dependent on the pipeline. The following description
and tables give an example of how this mechanism is applied
to handle pipeline stalls.

For example, a multi cycle integer operation such as a 32
bit multiply instruction are handled through re-injecting the
integer operation into the decode stage 1la of the integer
pipeline 11 the required number of times. The load/store
pipeline 10 is automatically placed in the cancel and
re-inject state when the integer pipeline 11 is in the re-inject
state effectively stalling the instruction in the decode stage
10a. A instruction stream which causes such an effect is for
example:

6,076,159

9

mul d0, d1, d2 ;instruction M

Id.w d3, [a0]0 ; instruction L
whereby ‘mul’ indicates a multiply instruction and ‘Id.w’
indicates a load word instruction. This instruction stream
would fill up the stages of the two major pipelines 10 and 11
as follows:

TABLE 2
CYCLE 1 2 3 4 5 6 7
INTEGER PIPE
Decode 11a M Mrl M2 Mr3
Execute 11b M Mrl Mr2 Mr3
Writeback 11¢ M Mrl Mr2 M3
State R1 R1 Rl N
LOAD/STORE PIPE
Decode 10a L L L L
Execute 10b L
Writeback 10c L
State C&R C&R C&R N

whereby ‘RI” stands for re-inject, ‘C&R’ stands for cancel
and re-inject and ‘N’ stands for normal. In case of a multiply
instruction followed by another integer instruction a no
operation instruction would be issued instead of instruction
L.

A so called read after write hazard occurs in the integer
pipeline 11 when the result from a multiply accumulator
instruction is not being available to any other arithmetic
operation for an extra cycle. This is due to the addition in the
write back stage 11¢ which is used to perform the accumu-
lation function which prevents a forwarding of the multiply
accumulator result from the execute stage 11b. If this hazard
exits, then the integer pipeline 11 is put into the cancel and
re-inject state and hence the load store pipeline 10 will also
cancel and re-inject. For example an instruction stream is:

madd do0, d1, d2, d3 ;instruction M

shr d0, d0, 2 ;instruction S

Id.w d1, [a0] ;instruction L
wherein ‘madd’ stands for a multiply and accumulate
instruction which in this example adds the result of a
multiplication of d2 and d3 to d1 and stores the result in d0.
‘shr’ stands for a shift instruction, whereby in this example
do is shifted rightwards by 2 and the result is stored in d0.
‘Id’ stands for a load instruction, whereby in this example
the content of the memory indicated by register a0 is loaded
into register d1. This example causes the following pipeline
states shown in table 3:

TABLE 3
CYCLE
1 2 3 4 5 6 7

INTEGER PIPE
Decode 11a M S S
Execute 11b M — S
Writeback 11¢ M — S
State N C&R N
LOAD/STORE PIPE
Decode 10a — L L
Execute 10b — — L
Writeback 10c — L
State N C&R N

The above described mechanism of locking the pipelines
10, 11 and 12 facilitates the hardware necessary to control

10

15

20

25

30

35

40

45

50

55

65

10

the different pipeline stages and synchronizes the pipelines
10, 11 and 12. The loss of performance is insignificant
compared to the advantages in realizing such a pipeline
structure in accordance with the present invention.

The address forwarding unit 500 and the data forwarding
unit 800 are necessary to assure the performance when
critical aspects of the pipeline behavior are taken into
account. These units 500 and 800 provide so called forward-
ing paths for address and data. These forwarding paths allow
the result of one instruction to be passed to the inputs of a
following instruction without having to wait for the write
and subsequent reading of the result from the register file
200 and 300. Without these forwarding paths dependent on
the instruction stream the pipelines 10 and 11 may stall. For
example if a second instruction following a first instruction
needs the result of the first instruction the execution of the
decode stage of the second instruction would stall during the
execution of the execute stage of the first instruction. With
the forwarding mechanism the execute stage of the first
instruction forwards its result to the execute stage of the
second instruction.

The data processor according to the present invention is in
particular ideal for executing so called digital signal pro-
cessing related instructions. Using the three pipeline units
described above it is possible to calculate Fast Fourier
Transformations (FFT) and Finite Impulse Response (FIR)
filter operations. Such calculations need in a repeating
program body often one ore more multiply instructions
followed by respective load instructions. In average
programs, with a data processor according to the present
invention the number of instructions executed in parallel is
approximately 1.8, whereas in the above mentioned filter
calculations the number of instruction executed in parallel
can reach between 2 and 3 instructions per cycle, because all
pipelines can be filled.

What is claimed is:

1. Method of executing multiple instructions with a data
processor comprising a first pipeline for decoding and
executing data instructions, a second pipeline for decoding
and executing address instructions, a loop pipeline for
executing loop instructions, a unit for issuing multiple
instructions to said pipelines, a first set of registers being
coupled with said first pipeline and a second set of registers
being coupled with said second pipeline whereby the
method comprises the steps of:

analyzing the instruction stream by means of the issue

unit,

in case of a first occurrence of a loop instruction, issuing

said loop instruction to the first or second pipeline and
in case of any succeeding loop instruction, issuing said
loop instruction to said loop pipeline,

issuing for at least the loop pipeline and another pipeline

one instruction in parallel only if a loop instruction
follows an address instruction or a data instruction,
whereby each pipeline receives an associated instruc-
tion from the instruction stream,

otherwise issuing a no operation instruction to the respec-

tive other pipeline, and

executing said instructions being issued to said pipelines

in parallel.

2. Method according to claim 1, further issuing instruc-
tions to all pipelines in parallel if a loop instruction follows
either an address instruction or a data instruction and an
address instruction follows a data instruction.

3. Method according to claim 1, wherein the first bit of
each instruction word indicates whether the instruction is to
be issued to the first or second pipeline.

6,076,159

11

4. Method according to claim 1, wherein a call, a return,
or a jump instruction can be issued to the first or the second
pipeline.

5. A data processor comprising:

a first pipeline having an execution stage,

a second pipeline for executing loop instructions,

a unit for issuing multiple instructions to said pipelines,
and

wherein said second pipeline comprises a loop instruction
detection unit for detecting a loop instruction, and
wherein said execution stage of said first pipeline
presets said loop instruction detection unit on the first
occurrence of a loop instruction with specific data of
said loop instruction.

6. A data processor according to claim 5 further compris-
ing a third pipeline having an execution stage, wherein said
first pipeline executes data instructions and said third pipe-
line executes address instructions.

7. A data processor according to claim 5 wherein said loop
instruction detection unit has comparison means to detect
the address of a loop instruction.

8. A data processor according to claim 5 wherein said loop
instruction detection unit comprises a loop target address
buffer and a loop detection address buffer.

9. Method of executing multiple instructions with a data
processor comprising a first pipeline for decoding and
executing instructions and a loop pipeline for executing loop
instructions, a unit for issuing multiple instructions to said
pipelines, whereby the method comprises the steps of:

analyzing the instruction stream by means of the issue
unit,

in case of a first occurrence of a loop instruction, issuing
said loop instruction to the first pipeline and in case of

10

15

20

25

30

12

any succeeding loop instruction, issuing said loop
instruction to said loop pipeline,

issuing for at least the loop pipeline and said first pipeline

one instruction in parallel only if a loop instruction
follows an address instruction or a data instruction,
whereby each pipeline receives an associated instruc-
tion from the instruction stream,

otherwise issuing a no operation instruction to the respec-

tive other pipeline, and

executing said instructions being issued to said pipelines

in parallel.

10. Method according to claim 9 wherein said data
processor comprises a second pipeline and wherein said first
pipeline is for executing data instructions and said second
pipeline is for executing address instructions.

11. Method according to claim 10, further issuing instruc-
tions to all pipelines in parallel if a loop instruction follows
either an address instruction or a data instruction and an
address instruction follows a data instruction.

12. Method according to claim 10, wherein a call, a return,
or a jump instruction can be issued to the first or the second
pipeline.

13. Method according to claim 9, wherein the first bit of
each instruction word indicates whether the instruction is to
be issued to the first or second pipeline.

14. Method according to claim 9, wherein during execu-
tion of a first occurrence of a loop instruction the address of
said loop instruction and the target address of said loop
instruction is buffered.

15. Method according to claim 14, wherein during a
succeeding occurrence of said loop instruction said buffered
loop instruction address is used to decode a loop instruction.

#* #* #* #* #*

