
6,076,159
Jun. 13, 2000

712/206
.. 395/375

.. 395/800

395/800

US006076159A

CH2887—8/ 90/0000/ 01 92, 1 990

ABSTRACT

Patent Number

Date of Patent:

4/1995 Chung et al. 8/1996 Kimura et al. .. 9/1996 Sachs et al. FOREIGN PATENT DOCUMENTS

0 473 420 A2 4/1992 European Pat. Off. .

OTHER PUBLICATIONS

Love, Carl E. et al., “An Investigation of Static Versus
Dynamic Scheduling”,
IEEE 192—201.

15 Claims, 8 Drawing Sheets

MUX

5,163,139 11/1992 Haigh etal. I

I
I
l
I
J

[11]

[45]

5,404,469
5,546,593
5,560,028

Primary Examiner—John A. Follansbee

[57]
A data processor is disclosed Which comprises a ?rst pipe
line for decoding and executing data instructions, a second
pipeline for decoding and executing address instructions, a
unit for issuing multiple instructions to the pipelines, a ?rst

241 set of registers being coupled With the ?rst pipeline, and a
second set of registers being coupled With the second
pipeline, Wherein ?rst and second pipeline process data in
parallel.

LOOP CACHE / BTB

LOOP
EXECUTION

LOOP PIPE

712/210

CACHE SUBSYSTEM

[_
I
|
|
|
|

[19]

.. G06F 9/00

.. 395/80023, 800.24,

5

712/241; 712/213; 712/23

PC UPDATE
AND CONTROL

EXECUTION OF A LOOP INSTRUCTING IN
A LOOP PIPELINE AFTER DETECTION OF
A FIRST OCCURRENCE OF THE LOOP
INSTRUCTION IN AN INTEGER PIPELINE

Inventors: Rod G. Fleck, Mountain View, Calif.;
Ole H. Moller, Lyngby, Denmark; Gigy
Baror, Ramat Gan, Israel

Assignee: Siemens Aktiengesellschaft, Munich,
Germany

Appl. No.: 08/928,766

Filed: Sep. 12, 1997

Field of Search 395/391, 389; 712/23, 24, 213, 215, 206,

References Cited

U.S. PATENT DOCUMENTS

4,967,339 10/1990 Fukumaru et al. 2

\

United States Patent
Fleck et al.

[541

[751

[731

[211

[221

[561

(9
ISSUE

CONTROL

PIPELINE
CONTROL IIIIIIIIIIIIJ

(7
INSTRUCTION DEMUX L

—* PRE-DECODE <

PROTECTION
REG.

DPI ACCESS
PORT

v

ADDRESS
BI-DIFIECT
PORT

U.S. Patent Jun. 13,2000 Sheet 1 0f8 6,076,159

DATA ADDRESS
REGISTER / 300 REGISTER / 200

FILE FILE

V K 7
INSTRUCTION FETCH

v I /10 /12
V V

11a\\ 10a \\
DECCDE DECoDE

V V V

11b\ 10b \ 12a\
\ EXECUTE \ EXECUTE \ EXECUTE

V V V

11C \ 10C \ 12C \

\' WRITE BACK \ WRITE BACK \ WRITE BACK

1:‘ I E * l

21 f 20
/

INSTRUCTION

BIT 31 0

P'II:1'|__2

U.S. Patent Jun. 13,2000 Sheet 3 0f8 6,076,159

[180
MEMORY SUBSYSTEM

A A A A K 150

v v v v

ADDRESS LOAD / STORE DATA LOAD / STORE
BUFFERS BUFFERS

A A A A (600 A A A A A (900 A

<400 _1/ 00

ADDRESS DATA
GENERAL GENERAL

/_ PURPOSE PURPOSE
200 REGISTERS REGISTERS

300
A \j

___,/V ___ \ I (T T T T V V T T (V \ V T

ADDRESS FORWARDING > DATA FORWARDING

A A A

/
I60 v v v v v v v \ 170

120 /~ LOAD / STORE PIPELINE < INTEGER PIPELINE —\ HO

FII3__4l

U.S. Patent Jun. 13,2000 Sheet 5 0f8 6,076,159

PIE_EII

U.S. Patent Jun. 13,2000 Sheet 6 0f8 6,076,159

PII3__ED

6,076,159
1

EXECUTION OF A LOOP INSTRUCTING IN
A LOOP PIPELINE AFTER DETECTION OF
A FIRST OCCURRENCE OF THE LOOP

INSTRUCTION IN AN INTEGER PIPELINE

BACKGROUND OF THE INVENTION

The present invention relates to a data processor and, in
particular, to a central processing unit (CPU) such as a
microcomputer or microcontroller. Microcontrollers are
Well knoWn in the art, and a large variety of such devices
from loW end devices (e.g., a 4/s-bit controller) to high end
devices (e.g., a 32-bit controller) are available. High end
controllers are used in almost any kind of electronic devices,
such as laser printers and hard disks or for controlling any
kind of processes, for example, in automobiles, etc.

With more complex tasks to be solved, the demand for
very fast, high end controllers is rising. In particular, such
devices are necessary to control real time applications. In
such applications, it is necessary to process data very fast. It
is knoWn in the art of microcomputers and microcontrollers
to use the so called pipeline technique to speed up data
processing. It is also knoWn to use multiple pipelines in
parallel to process data even faster.

A highly parallel and pipelined computer processor, for
example, is a very long instruction Word (VLIW) processor
as disclosed in US. Pat. No. 5,450,556. Such a VLIW
processor has a plurality of arithmetic and logic units Which
process instruction in parallel to speed up the operation of
the computer. Therefore, a multi-port register ?le is con
nected to a plurality of units as shoWn in FIG. 1 of the above
mentioned disclosure. To process all instructions Which are
issued in parallel to the respective units correctly a number
of precautions, for example dependency checks, completion
analysis, resource checks, etc., have to be taken. In VLIW
machines, these precautions are mostly shifted to the soft
Ware side, and they produce lots of code siZe due to their
hardWare concept.

Another example for high speed microprocessors or
microcontrollers are superscalar machines. Their multiple
pipeline design requires, for example a dependency analysis
to assure Whether instructions issued in parallel are depen
dent on each other. Also, so called register renaming might
be necessary if tWo instructions read from to the same
register. To get the optimal performance it is often necessary
to execute instructions out of order, Which has to be checked
in order not to violate a program order. To support instruc
tion look ahead and internal data forWarding, Which are
needed to schedule instructions through the multiple pipe
lines simultaneously so called reservation stations and reor
der buffers are necessary. All these precautions and others
result in an either very complicate structure including addi
tional hardWare and/or in compilers Which are able to
analyZe a program and issue the respective optimiZed assem
bler code. These precautions are cumbersome and increase
the price of a microcontroller and/or its tools.

SUMMARY OF THE INVENTION

Therefore, it is an object of the present invention to
provide a data processor With the capability of very fast
execution Without the necessity every precaution mentioned
above.

This object is accomplished by a data processor Which
comprises a ?rst pipeline for decoding and executing data
instructions, a second pipeline for decoding and executing
address instructions, a unit for issuing multiple instructions
to said pipelines, a ?rst set of registers being coupled With

10

15

25

35

45

55

65

2
said ?rst pipeline, and a second set of registers being
coupled With said second pipeline, Wherein ?rst and second
pipeline process data in parallel.

It is further an object of the present invention to provide
a method of executing instructions With a data processor
With the capability of very fast execution.

This is achieved by a method of executing multiple
instructions With a data processor comprising a ?rst pipeline
for decoding and executing data instructions, a second
pipeline for decoding and executing address instructions, a
unit for issuing multiple instructions to said pipelines, and a
?rst set of registers being coupled With said ?rst pipeline and
a second set of registers being coupled With said second
pipeline Whereby the method comprises the steps of:

analyZing the instruction stream by means of the issue
unit,

issuing for each pipeline one instruction in parallel only if
a prede?ned order of the instruction stream is given
Whereby each pipeline receives an associated instruc
tion from the instruction stream,

otherWise issuing a no operation instruction to the respec
tive other pipeline, and

executing said instructions being issued to said pipelines
in parallel.

In a further embodiment the data processor according to
the invention comprises a third pipeline Which is capable of
executing a loop instruction in parallel With the other tWo
pipeline units.

The data processor and the method of executing multiple
instructions require only a minimiZed dependency analysis.
Renaming of registers is not necessary. Also, no out of order
execution is provided. By providing a primary decoding of
any instruction by its most signi?cant bit, a quick distribu
tion of the instructions to the respective pipelines is possible.
By providing synchroniZed pipeline units the expense of
hardWare for controlling the pipelines is further minimiZed.
Therefore, an arrangement according to the present inven
tion is ideal for a digital signal processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shoWs a basic block diagram of a superscalar
pipeline structure according to the present invention,

FIG. 2 shoWs a basic instruction Word,

FIG. 3 shoWs a functional block diagram of a pipeline
structure according to FIG. 1,

FIG. 4 shoWs a basic diagram of a register ?le connected
to a memory unit and the pipeline structure, and

FIGS. 5A to SF shoWs an embodiment of the register ?le
of FIG. 4 in more detail.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shoWs a basic diagram of the pipeline system
according to a preferred embodiment of a super-scalar 32 bit
microcontroller. Three pipelines 10, 11, and 12 are provided.
The basic tWo pipelines are pipeline 10 Which handles
address instructions and pipeline 11 Which handles data
instructions. Address instruction primarily use the address
register ?le and most of the instructions are load/store
instructions. Data instructions primarily use the data register
?le and most of these instructions are integer instructions. As
some instructions use either data or address registers or no

register at all, for example call, return, and jump
instructions, they can be executed in either pipeline unit. A

6,076,159
3

third pipeline 12 handles only one kind of load/store
instructions, namely loop instructions. Pipelines 10 and 11
each comprise a decode stage 10a and 11, respectively, an
execute stage 10b and 11b, respectively and a Write back
stage 10c and 11c, respectively. The third pipeline comprises
only an execute stage 12a and a Write back stage 12c. The
loop pipeline 12 can of course comprise three stages like the
other pipelines, but in this embodiment such additional
hardWare is not necessary as Will be explained beloW. An
address register ?le 200 is coupled to the load/store pipeline
10 and to the loop pipeline 12, Whereas a data register ?le
300 is coupled to integer pipeline 11. For a better overvieW
buffer registers and address as Well as data forWarding
registers and their connection are not shoWn in FIG. 1. They
Will be explained in more detail beloW. A instruction fetch
unit 7 provides the pipelines 10, 11, and 12 With the
respective instructions.

FIG. 2 shoWs an overvieW of an instruction Word Which
has a bit Width of 32 bits. The instruction proper is contained
in the main body comprising bits 0 to 30, Whereas bit 31,
indicated by numeral 21, indicates the kind of the instruc
tion. Of course, any of the 32 bits of the instruction Word
could be used as an indicator. In this embodiment tWo
different kind of instructions can be executed in tWo different
pipelines, namely a load/store instruction in pipeline 10 and
a integer instruction in pipeline 11. The pre-decoder and
instruction issue units can distinguish these instruction sim
ply by evaluating the most signi?cant bit 21 of each instruc
tion Word.

FIG. 3 shoWs the pipeline structure of FIG. 1 in more
detail. It also shoWs main parts of the control logic Which are
essential for the operation of the pipelines. For a better
overvieW, FIG. 3 shoWs only the main connections betWeen
these main units. Same numerals indicate the same units. In
the preferred embodiment, this instruction fetch module 1
comprises the three pipeline units 10, 11 and 12 according
to FIG. 1. HoWever, the microprocessor may have only one
main pipeline Which includes a plurality of sub-pipelines.
Also, the present invention is not limited to a certain number
of pipeline stages.
An instruction demultiplexer 7, representing the instruc

tion providing/issuing unit, provides the different pipeline
units 10, 11 and 12 With their respective instructions. This
instruction demultiplexer 7 is controlled by an issue control
unit 9 Which is coupled to a pipeline control unit 14. The
instruction demultiplexer 7 is coupled to the output of a
multiplexer 5 Which either forWards an instruction from a
cache subsystem 13 or from a loop cache buffer unit 3. The
loop cache buffer unit 3 is coupled to a program control
update and control unit 2 Which is also coupled to the cache
subsystem 13. As part of the loop pipeline 12, a loop
execution unit 4 is on one hand coupled to the program
counter update and control unit 2 and on the other hand to
the loop cache buffer 3. The loop cache buffer 3 can also
contain a branch target buffer (BTB). The output of the
multiplexer 5 is connected to an input of a pre-decoder 6
Which has an output Which is connected to the instruction
demultiplexer 7. Furthermore, the pre-decoder 6 is coupled
to the program counter update and control unit 2. A protec
tion register 8 is coupled to the program counter update and
control unit 2 and to the three pipelines 10, 11 and 12. This
unit 1 is responsible for feeding instructions to the different
pipelines 10, 11 and 12. The main pipelines 10 and 11 of this
embodiment have four stages. The ?rst stage is formed by
the instruction demultiplexer 7, the pre-decoder 6 and the
logic connecting the pipelines 10, 11 and 12 With the cache
subsystem 13. This stage is generally referred to as the fetch

15

25

35

45

55

65

4
stage Which issues the instructions to the respective main
pipelines 10 and 11. The second stage is depicted by the
units 10a and 11a and referred to as the decode stage Where
the instructions are decoded. The third stage is depicted by
units 10b and 11b and referred to as the execute stage Where
the instructions are executed. In other Words, the operation
proper is performed by, for example, calculation of an
address in a load/store instruction, or performing a multi
plication. The fourth stage is depicted by units 10c and 11c
and referred to as the Write back stage Where the results of
the respective operation is Written back to, for example, the
register ?le or a memory location.

For a better overvieW, FIG. 3 does not shoW the connec
tion betWeen the pipelines and the register ?le respectively
the memory sub-system. The folloWing FIGS. 4 and 5A to
SF shoW hoW the register ?les are coupled to the pipelines.

FIG. 4 shoWs an overvieW of the general purpose register
?le of a 32 bit microcontroller and its connections to a
memory sub-system and the integer and the load/store
pipelines according to an preferred embodiment. The gen
eral purpose register ?le 100 comprises an address register
?le 200 and a data register ?le 300 that contain a plurality
of address and data registers 400, 700 With a predetermined
bit Width and buffers 500, 600, 800, 900. In the preferred
embodiment the register bit Width is 32 bits, and the number
of registers is 16. This bit Width can be any bit siZe according
to the speci?cation of the respective microcontroller, micro
processor or data handling unit.

On the one hand, the address registers 400 are connected
via a bus 130 to an address forWard unit 500 and on the other
hand to address load and store buffer 600. Further, the data
register ?le 100 contains a plurality of data registers 700, for
example, 16 data registers With a bit Width of 32 bit. A
second bus 140 is provided Which connects the data registers
700 on the one hand to data load and store buffers 900 and
on the other hand to data forWard unit 800. The general
purpose register ?le 100 is on the one hand connected to a
data memory unit 180 through a third bus 150 and on the
other hand to additional buses 160, 170. Bus 160 connects
the address forWard buffers 500 and parts of the data forWard
buffers 800 to a load/store pipeline unit 120 comprising, for
example, an address arithmetic unit and an instruction fetch
unit (IFU). Bus 170 connects the data forWard buffers 800 to
an unit 110 comprising, for example, a multiply accumulator
(MAC) and an integer execution unit. Additional buses
160A and 170A connect the address register ?le With bus
170 and the integer pipeline and the data register ?le With
bus 160 and the load/store pipeline. These buses 160A and
170A can be used to transfer the content of data registers or
a result of the integer pipeline to any address register in the
address register ?le 200 or the content of an address register
or a result of the load/store pipeline to anyone of the data
registers in the data register ?le 300 and vice versa. Usually
one of these busses, for example bus 170A, is suf?cient and
the other one can be omitted.

FIGS. 5A through 5F depict an embodiment of a register
?le 100 shoWing the elements in more detail. Only one bit
of each register d0 . . . d15, a0 . . . a15 is shoWn in this

diagram. The other 31 bits of the register d0 . . . d15,
a0 . . . a15 are arranged in parallel. Throughout the FIGS. 5A

to SF the same numerals represent the same elements.

FIG. 5D shoWs registers in an address register ?le. For a
better overvieW, registers a2 to a13 are not shoWn in FIG.
5D. Every address register a0, . . . a15 of the address register
?le 400 has tWo unidirectional outputs for reading and three
bidirectional I/O-ports. One internal bus line 40 is connected

6,076,159
5

to the ?rst bidirectional I/O-port of all address registers
a0, . . . a15, and tWo lines 41 and 42 are connected to the

respective tWo outputs of all address registers a0, . . . a15.
Further, tWo internal bus lines 44 and 46 are connected to
respective I/O-ports of all even address registers a0, a2,
a4 . . . a14. TWo more lines 43 and 45 Which are connected

to the I/O-ports of all odd address registers a1, a3, a5 . . . a15.
FIG. 5A shoWs the address load and store buffer 600 of

FIG. 1 in detail. Bus lines 43 to 46 connect to the respective
inputs of store buffers 101 to 104. The outputs of store
buffers 101 to 104 are connected to memory bus lines 119,
121,122, and 123 through drivers 106 to 109. All drivers are
tri-state drivers Which are provided With a control input for
selective activation by means of a control unit (not shoWn).
TWo blocks 117 and 105 indicate 4 load buffers Which are
connected on the one hand to the memory bus lines 119,
121,122, and 123 and on the other hand through drivers 118,
111, 112, and 113 to the internal bus lines 43 to 46. In
addition, the outputs of the load buffer 105 are connected
through buffers 115 and 116 to the internal bus lines 43 and
44.

FIG. 5E shoWs the address forWard unit 500 of FIG. 4 in
detail. Bus lines 40, 41 and 42 are connected to address
forWard output bus lines 524, 525 and 526 through drivers
527, 501 and 502, respectively. TWo memory bus lines 121
and 122 are each connected to the input of three drivers 503,
504, 505 and 506, 507, 508. The outputs of drivers 503 and
506 connect to bus line 526, the outputs of drivers 504 and
507 to bus line 525 and the outputs of drivers 505 and 508
to bus line 524. Internal bus lines 43 and 44 are connected
to the outputs of tWo drivers 518 and 519, respectively. The
inputs of drivers 518 and 519 are connected to the output of
a Write-back buffer 515 the input of Which is connected to an
address forWard bus input line 523. TWo other drivers 516
and 517 are provided the output of Which are coupled With
the internal bus line 40. The input of driver 517 is connected
to the output of buffer 515. The input of driver 516 is
connected to the output of buffer 514 the input of Which is
connected to address forWard bus input line 522. Bus lines
45 and 46 are also connected to bus lines 522 and 523
through bidirectional drivers 520 and 521, respectively. The
signal on bus line 523 is also fed to the inputs of three drivers
509, 510 and 511 the outputs of Which are connected to bus
lines 524, 525 and 526, respectively. The signal on bus line
522 is also fed to the inputs of tWo drivers 512 and 513 the
outputs of Which are connected to bus lines 524 and 525,
respectively. Again, all drivers are tri-state drivers Which are
provided With a control input for selecting by means of a
control unit (not shoWn). The three units 400, 500 and 600,
according to FIG. 4, shoW the path of the address signals into
and out of the address register ?le, Whereby bus lines 119 to
122, according to FIG. 5A, connect to the memory unit 180
and bus lines 522 to 524 to the address arithmetic pipe and
the instruction forWard unit 120.

FIG. 5C shoWs data registers in a data register ?le. Again,
for a better overvieW, registers d2 to d13 are not shoWn in
FIG. 5C. Every data register d0, . . . d15 of the data register
?le 500 has three unidirectional outputs for reading and tWo
bidirectional I/O-ports. TWo lines 72 and 73 are connected to
the ?rst tWo outputs of all data registers d0, . . . d15,
respectively. Further, an internal bus lines 71 is connected to
respective outputs of all even data registers d0, d2, d4 . . .
d14, Whereas an internal bus line 70 is connected to respec
tive outputs of all odd registers d1, d3, . . . d15. TWo more
lines 74 and 76 are connected to the I/O-ports of all odd
address registers d1, d3, d5 . . . d15. Finally, tWo other lines
75 and 77 are connected to the I/O-ports of all even address
registers d0, d2, d4 . . . d14.

15

25

35

45

55

65

6
FIG. 5B shoWs the data load and store buffer 900 of FIG.

4. Internal bus lines 74 to 77 are coupled to the inputs of four
store buffers 909 to 912, respectively. The output of store
buffer 909 is coupled to a memory bus line 921 through a
driver 916, and the output of store buffer 910 is coupled to
a memory bus line 920 through driver 917. The outputs of
buffers 911 and 912 are connected to tWo input terminals of
a mask unit 915. Mask unit 915 is provided With tWo input
and tWo output terminals. The tWo output terminals of the
mask unit 915 are coupled to tWo memory bus lines 922 and
923 through drivers 918 and 919, respectively. TWo blocks
908 and 913 depict four load buffers. Block 913 is provided
With tWo input terminals Which are connected to tWo internal
bus lines 924 and 901, respectively and to the memory bus
lines 922 and 923 through an align block 914. The align
block 914 is provided With tWo inputs Which are connected
to the inputs of mask unit 915 and the outputs of the store
buffer 913, respectively. Furthermore, one output of load
buffer 913 is coupled to internal bus lines 74 and 76 through
respective drivers 904 and 906. The other output of load
buffer 913 is coupled to internal bus lines 75 and 77 through
drivers 905 and 907. The second load buffer 908 is con
nected on its input side to memory bus lines 920 and 921,
respectively and on its output side to internal bus lines 74
and 75 through drivers 902 and 903, respectively. Again, all
drivers are tri-state drivers Which are provided With a control
input for selecting by means of a control unit (not shoWn).

FIG. 5F shoWs data forWard unit 800 of FIG. 4 in detail.
Internal bus lines 70 to 73 are coupled With the data forWard
bus lines 802 to 805 through drivers 807 to 810. An
additional data forWard bus line 806 is connected to output
terminals of drivers 827 and 828 the input terminals of
Which are connected to bus lines 802 and 803, respectively.
Bus line 806 is part of the bus 170A, according to FIG. 4,
Which is connected to the load/store pipeline 120 to build a
coupling betWeen address register ?le 200 and data register
?le 300. Bus 160A is not implemented in this embodiment.
Bus line 924 is connected to the inputs of three drivers 811,
812 and 813 the outputs of Which are connected to bus lines
805, 804 and 802, respectively. Bus line 901 is connected to
the inputs of three drivers 814, 815 and 816 the outputs of
Which are connected to bus lines 805, 804 and 803, respec
tively. TWo other data forWard bus lines 842 and 801 are
provided Which are coupled to the input terminals of tWo
Write-back buffers 829 and 830, respectively. The output
terminals of buffers 829 and 830 are coupled to bus lines 74
and 75 through drivers 832 and 834, respectively. In
addition, the output of buffer 830 is coupled to bus line 74
through a driver 833. Bus line 842 is coupled to bus line 76
through driver 835, and bus line 801 is also coupled to bus
lines 76 and 77 through drivers 836 and 837, respectively.
Also, bus line 806 is coupled to bus lines 76 and 77 through
drivers 840 and 841, respectively. Furthermore, bus line 806
is connected to the input terminal of a further Write-back
buffer 831 the output of Which is coupled to bus lines 76 and
77 through drivers 838 and 839, respectively. Also, bus line
806 is coupled to bus lines 802 to 805 through drivers 817
to 820, respectively. Finally, bus line 842 is coupled to bus
lines 805, 804 and 802 through drivers 821 to 823, respec
tively and bus line 801 is coupled to bus lines 803 to 805
through drivers 824 to 826, respectively. Again, all drivers
are tri-state drivers Which are provided With a control input
for selecting by means of a control unit (not shoWn). The
memory bus lines 119 to 122, according to FIG. 5A, and 920
to 923, according to FIG. 5B, form the memory bus 150 of
FIG. 4. The bus lines 522 to 526, according to FIG. 5E, and
806 form bus 160 and bus lines 842 and 801 to 805 form bus
170 of FIG. 4.

