(12)

United States Patent

Elliott et al.

US006754810B2

(10) Patent No.: US 6,754,810 B2
45) Date of Patent: Jun. 22, 2004

(54)

(75)

(73)

(*)

(21)
(22)

(65)

(63)

(51)
(52)

(58)

(56)

WO

INSTRUCTION SET FOR BI-DIRECTIONAL
CONVERSION AND TRANSFER OF
INTEGER AND FLOATING POINT DATA

Inventors: Timothy A. Elliott, Austin, TX (US);
G. Glenn Henry, Austin, TX (US)

Assignee: L.P.-First, L.L.C., Fremont, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 10/120,538
Filed: Apr. 10, 2002
Prior Publication Data

US 2002/0133691 Al Sep. 19, 2002
Related U.S. Application Data

Continuation of application No. 09/866,078, filed on May
25, 2001, now Pat. No. 6,405,306, which 1s a continuation
of application No. 08/980,481, filed on Nov. 29, 1997, now
Pat. No. 6,253,311.

Int. CL7 oo, GO6F 9/315
US.Cl ..., 712/225; 712/221; 712/222
Field of Search 708/495; 712/1,

712/2, 3, 4, 221, 222, 223, 225

References Cited

U.S. PATENT DOCUMENTS

5,574,928 A * 11/1996 White et al. 712/23
5,805,486 A 9/1998 Sharanpani

5,864,690 A 1/1999 Henry et al.

5,889,984 A 3/1999 Mills

6,189,087 B1 * 2/2001 Witt et al. ..ocvevveennen.... 712/208
6249798 B1 6/2001 Gulliver et al.
6.405306 B2 * 6/2002 FElliott et al. cvovv.......... 712/222

FOREIGN PATENT DOCUMENTS
WO 97/12317 *4/1997

500
e

OTHER PUBLICAITONS

David L. Weaver & Tom Germond, The SPARC Architec-
ture Manual, Version 9, Menlo Park California, Copy Right
1994.

Michael Slater, A Guide to RISC Microprocessors, pp
159-189, San Diego, CA, Copyright 1992,

Glenford J. Myers & David L. Budde, The 80960 Micro-
processor Architecture, chapter 3, pp 74-89 Copyright 1988.
Daniel Tabak, Advanced Microprocessors, Fairfax, VA,
Copyright 1991.

Glenford J. Myers & David L. Budde, The 80960 Micro-
processor Architecture, Copyright 1988.

Gerry Kane & Joe Heinrich, MIPS RISC Architecture,
Upper Saddle River, NJ, Copyright 1992.

MIPS Technologies, MIPS32 Architecture For Program-
mers, vol. I: Introduction to the MIPS32 Architecture, Copy-
right 2001.

MIPS Technologies, MIPS64 Architecture For Program-
mers, vol. II: The MIPS64 Instruction Set, Copyright
2000-2001.

Intel Corporation, 1860 64—Bit Microprocessor Program-
mer’s Reference Manual, Copyright 1989.

John Hennessy & David Patterson, Computer Architecture a
Quantitative Approach, San Mateo, CA, Copyright 1990.
Intel Corporation, 1960 MC Microprocessor Reference
Manual, Copyright 1991.

Fuccio, et al.,, The DSP32C: AT&Ts second generation
floating point digital signal processor, IEEE Micro, vol. §,
Issue 6 pp. 3048, 1988.

* cited by examiner

Primary Examiner—William M. Treat
(74) Attorney, Agent, or Firm—James W. Huffman

(57) ABSTRACT

An apparatus and method for bi-directional format conver-
sion and transfer of data between integer and floating point
registers 1s provided. A floating point register 1s configured
to store floating point data, and integer data, 1n a variety of
numerical formats. Data 1s moved 1n and out of the floating
point register as mteger data, and 1s converted 1nto floating
point format as needed. Separate processor instructions are
provided for format conversion and data transfer to allow
conversion and transfer operations to be separated.

30 Claims, 5 Drawing Sheets

Instruction_ 502
FETCH
B | Cache I

504
|= Instruction Buffer I

TRANSLATE | Translator I S00

_l ¢ 509

y A 4 511

IU Register File

REGISTER

Integer 508

Unit

. : .
520 FPU Register File

Floating
Paint

Unit

510

Conversion

DATA

U.S. Patent Jun. 22, 2004 Sheet 1 of 5 US 6,754,810 B2

FIG. 1
/ 100
Formats for Numerical Data
NAME LENGTH RANGE ENCODING
(BITS)
BINARY INTEGERS:

. 4 positives as binary integers
word integer 19 10 negatives in two's complement
short integer 32 107
long integer 64 1078 \ 4
BINARY REAL NUMBERS: sign exponent significand

bits bits bits
single precision 32 10*38 1 8 23
double precision 64 10%308 1 11 52

extended precision 80 104932 1 15 64

U.S. Patent Jun. 22, 2004 Sheet 2 of 5 US 6,754,810 B2

FIG. 2
200 \,

FETCH Instruction 202
Cache

. 204
> Instruction Buffer

U Reqister File FPU Register File

209 911

REGISTER |
Integer 208 Floating 210
Unit Point
Unit
212
300
FIG. 3 5
31 16 15 0 79 64 63 0
. 315 63
N g ST
: ST(1)
5) ST(2)
P : ST(3)
- S :
- = 5 ST(4)
O LA
O i ST(5)
ST(6)
ST(7)

311

U.S. Patent

FIG. 4

Floating Point to Integer
FMXCVT_HF f1f3
FMXCVT_WF
FMXCVT_LF

Integer fo Floating Point
FMXCVT_FH f1,f3
FMXCVT_FW
FMXCVT_FL

Floating Point to Integer
FMXMOV_Ix ir1,f3
FMXMOV_IS
FMXMOV_ID
FMXMOV_IE
FMXMOV_IP
FMXMOV_IH
FMXMOV_IW
FMXMOV_IL
FMXMOV_IBS

Integer to Floating Point
FMXMOV_Fx f1,ir1
FMXMOV_FS
FMXMOV_FD
FMXMOV_FE
FMXMOV_FP
FMXMOV_FH
FMXMOV_FW
FMXMOV_FL

Jun. 22, 2004

Sheet 3 of 5

400
./

CONVERSION INSTRUCTIONS

converts contents of f3 to 16-bit integer and stores in 1

converts contents of f3 to 32-bit integer and stores in f1
converts contents of f3 to 64-bit integer and stores in f1

converts contents of f3 from 16-bit integer and stores in f1

converts contents of f3 from 32-bit integer and stores in f1

converts contents of 3 from 64-bit integer and stores in 1
MOVE INSTRUCTIONS

moves contents of fp register f3 into integer register ir1
single precision format (32-bits into ir1)

double precision format (64-bits into ir1 and ir2)

extended precision significand format (64-bits into ir1, ir2)
extended precision exponent format (16-bits into ir1)
16-bit integer format (16-bits into ir1)

32-bit integer format (32-bits into ir1)

64-bit integer format (64-bits into ir1)

8-bit saturated integer format (8-bits into ir1)

moves contents of integer register ir1 into fp register f1
single precision format (32-bits into f1)

double precision format (64 bits from ir1, ir2 into f1)
extended precision significand format (64 bits into f1)
extended precision exponent format (16 bits into f1)
16-bit integer format (16-bits into f1)

32-bit integer format (3 2-bits into f1)

64-bit integer format (64-bits into f1)

US 6,754,810 B2

U.S. Patent Jun. 22, 2004 Sheet 4 of 5 US 6,754,810 B2

FIG. 5

500
hS

FETCH Instruction 502
Cache

. 504
> Instruction Buffer

506

509 511
IU Register File =0 FPU Register File

Floating
Point

REGISTER

508 510

Integer
Unit

Conversion

919

Unit

4 51 6'

N 512

U.S. Patent

FIG. 6

FIG. 7

Jun. 22, 2004

Sheet 5 of 5

Start

Convert
FP to
Integer

within FPU

Move
Integer

from
FPU to U

Done

Move
Integer
from

U to FPU

Convert
Integer

to FP

within FPU

Done

602

604

606

608

702

704

706

708

US 6,754,810 B2

600
v

/ 700

US 6,754,810 B2

1

INSTRUCTION SET FOR BI-DIRECTIONAL
CONVERSION AND TRANSFER OF
INTEGER AND FLOATING POINT DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 09/866,078, filed May 25, 2001, now U.S. Pat. No.
6,405,306, which 1s a continuation of application Ser. No.
08/980,481 filed Nov. 29, 1997 now U.S. Pat. No. 6,253,311
entitled “INSTRUCTION SET FOR BIDIRECTIONAL
CONVERSION AND TRANSFER OF INTEGER AND
FLOATING POINT DATA”.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1nvention relates 1n general to the field of
microprocessors, and more particularly to a method and
apparatus for converting and transferring data between float-
ing point and integer registers without first storing the data
In Memory.

2. Description of the Related Art

One of the fundamental applications of a computer system
is the processing and storing of numeric data (sometimes
called “number crunching”). To more efficiently perform
digital operations on numeric data, scientists and engineers
have adopted numerical structures that differ from those
used 1n traditional mathematics. First of all, to perform
arithmetic operations, a computer must be capable of storing
and retrieving numerical data. The numerical data should
1deally be stored 1n consistent formats designed to minimize
space and optimize processing efficiency. Historically,
numeric data was stored 1n structures devised to fit the
characteristics of a specific machine. Only recently have
common standards been adopted that define mathematical
standards for digital computers.

In general, modern computer systems treat numerical data
as either mteger data or floating point data depending on the
application, the size of the number required by the
application, and the type of operation to be performed on the
data. Because of the difference in data formats between
integer data and floating point data, microprocessors typi-
cally have two separate processing units, one for processing
integer data (the Integer Unit, or IU), the other for process-
ing floating point data (the Floating Point Unit, or FPU).
Integer data 1s operated on by the integer unit within a
microprocessor, while floating point data 1s operated on by
the floating point unit within a microprocessor.

Frequently, data 1s shared by both an integer unit and a
floating point unit. When data 1s shared, it must first be
converted 1nto an acceptable form, depending on whether 1t
will be operated upon by the integer unit or the tloating point
unit. Conversion of data into an acceptable form 1s typically
accomplished as a single operation that converts the data,
from integer to floating point, or from floating point to
integer, and then stores the converted data into memory.

Thus, before an mteger unit can operate on data that 1s 1n
a floating point unit, the data must first be converted into
integer format, and then stored to memory. Alternatively,
before a floating point unit can operate on data that 1s 1n an
integer unit, the data must first be converted into floating
point format, and then stored to memory. In modern
microprocessors, requiring data to be converted, stored to
memory, and then retrieved from memory, 1s very time
consuming for the microprocessor, and adds significant
delay 1n processing the data.

10

15

20

25

30

35

40

45

50

55

60

65

2

Therefore, what 1s needed 1s an apparatus and method that
converts numerical data into an acceptable format for either
an mteger unit, or a floating point unit, without requiring the
data to be stored to, and later retrieved from memory.
Furthermore, what 1s needed 1s a microprocessor that shares
data between an 1nteger unit and a floating point unit, and
separates the steps of format conversion and data movement.

SUMMARY

To address the above-detailed deficiencies, 1t 1s an object
of the present invention to provide a method and apparatus
for bi-directional transfer of data between a floating point
unit and an integer unit, without requiring intermediate

storage 1n system memory.

Accordingly, 1n the attainment of the aforementioned
object, 1t 1s a feature of the present 1invention to provide a
microprocessor that includes an integer register file, a tfloat-
ing point register file, and a first conversion mstruction. The
integer register file 1s configured to store a plurality of
integers. The floating point register file 1s coupled to the
integer register file and 1s configured to store a plurality of
floating point numbers. The floating point register file 1s also
configured to store data 1n integer format. The first conver-
sion 1nstruction 1s provided by a translator, or by a control
ROM. The first conversion instruction converts a first one of
the plurality of floating point numbers within the floating
point register file nto a first integer and temporarily stores
the first integer within the floating point register file.

An advantage of the present invention 1s that data may be
transferred between the integer register file and the floating
point register file much faster than the prior art, since the
microprocessor does not have to store the converted data in
system memory.

Another object of the present invention 1s to provide a
floating point register file that can store either floating point
data or integer data.

It 1s therefore a feature of the present invention to provide
a floating point register file within a microprocessor. The
floating point register file mncludes a plurality of floating
point registers, and conversion logic. The plurality of float-
ing point registers store floating point numbers 1n extended
precision format. The conversion logic 1s coupled to the
plurality of floating point registers and 1s configured to
convert the floating point numbers 1nto 1ntegers, and to store
the mtegers into the plurality of floating point registers.
Once the conversion 1s complete, the integer data can be
moved to the integer register file.

An advantage of the present invention 1s that by allowing
the floating point register file to store both floating point
data, and integer data, the conversion process can be sepa-
rated 1nto two distinct steps of converting the data, and
moving the data.

It 1s therefore an object of the present invention to
separate data interchange between the floating point register
and the integer register into two distinct steps: converting
the data, and moving the data.

Another feature of the present invention 1s to provide a
method for transferring data between an integer register file
and a floating point register file that does not require
intermediate storage of the data in system memory. One
method includes retrieving integer data from an integer
register file and storing the integer data into a floating point
register file. This method further includes converting the
stored mteger data 1n the floating point register file ito
floating point data.

An alternative method includes converting floating point
data 1n a floating point register file 1into integer data, retriev-

US 6,754,810 B2

3

ing the integer data from the floating point register file and
storing the integer data into an integer register file. Depend-
ing on which method is used, data can either begin as integer
data 1n the 1nteger register, and can be moved to the floating
point register and converted. Or, data can begin as floating,
point data 1n the floating point register, and can be converted
and moved to the integer register.

An advantage of this invention 1s that data conversion and
movement between an mteger unit and a floating point unit
can be rapidly performed without requiring intermediate
storage 1n system memory.

A further advantage of the present invention 1s that since
the steps of conversion and movement are distinct, other
instructions may be placed between the steps of conversion
and movement, to eliminate dependency stalls in the pipe-
line of a microprocessor.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features, and advantages of the
present mnvention will become better understood with regard
to the following description, and accompanying drawings
where:

FIG. 1 1s a table 1llustrating floating point data formats for
numerical data.

FIG. 2 1s a block diagram of a portion of a microprocessor
that transfers data between floating point and integer register
files via memory.

FIG. 3 1s a block diagram of the integer and floating point
register files 1llustrated 1in FIG. 2.

FIG. 4 1s a table 1llustrating the data conversion and move
mstructions according to the present invention.

FIG. 5 1s a portion of the microprocessor according to the
present mvention for converting and moving data between
integer and floating point register files, without requiring
intermediate storage 1n memory.

FIG. 6 1s a tlow chart 1llustrating conversion of floating,
point data into an integer format, and transfer of the con-
verted data from a floating point register mto an integer
register.

FIG. 7 1s a flow chart illustrating transfer of integer data
from an integer register mto a floating point register, and
conversion of the integer data into floating point format.

DETAILED DESCRIPTION

Referring to FIG. 1, a table 100 1s provided that illustrates
common formats for numerical data within a microprocessor
system. The table 1s divided into two parts, one associated
with Binary Integers, the other associated with Binary Real
Numbers.

Integer numbers are typically stored mm one of three
formats that have identical structure but different capacity.
The word integer format occupies two bytes (16-bits), the
short integer format takes up a double word (32-bits), and
the long integer format a quadword (64-bits). In all three
formats the most significant bit encodes the sign of the
number. Generally, a sign bit of 1 represents a negative
number and a sign bit of 0 a positive number. Positive
numbers are stored 1n pure binary form. Negative numbers
are represented as two’s complement form.

The term Real Number, on the other hand, 1s typically
used to designate a number than can be represented in
signed, floating point form. Table 100 shows three floating
point encodings for binary real numbers. All three real
number formats have the following fields: a sign bit field, an

10

15

20

25

30

35

40

45

50

55

60

65

4

exponent field, and a significand field. The sign bit field,
which 1s the most significant bit 1n the encoding, represents
the sign of the number. A 1-bit 1n the sign field indicates a
negative number and a 0-bit indicates a positive number. The
exponent field encodes the position of the significand’s
binary point. The exponent encoding i1s in bias form.
Therefore, if the absolute value of the exponent 1s less than
the bias, then the exponent is negative. This eliminates the
need to store the sign of the exponent. An exponent smaller
than the bias i1s in the negative range. An exponent larger
than the bias 1s 1n the positive range. The exponent 1s zero
it 1t 1s equal to the bias. The significand field encodes the
number’s significant digits as a binary fraction. Normal
numbers have an exponent 1in the range of 11 ...10t0 00. . .
01 and the significand 1s a binary fraction i1n the form
1.xx...xx. The number of digits in the fractional part of the
significand changes 1n the different formats. The integer
digit of the significand 1s implicit 1n the single and double
precision formats but 1s explicitly coded in the extended
precision format.

As mentioned 1 the Background above, binary integers
are operated on by an integer unit, and binary real numbers
are operated on by a floating point unit. The integer unit may
store data 1n 1ts integer register file in any of the three integer
formats shown 1n table 100. However, the floating point unit,
even though it reads and writes data in any of the three real
number formats, always stores data within 1ts floating point
register file, 1n 80-bit extended precision format. Numbers
encoded 1n the remaining formats, typically exist only in
memory. Thus, when a number 1s loaded from memory 1nto
a tloating point register file, 1t 1s automatically converted
into the extended precision format.

With the above overview of numeric formats within
computer systems, a more detailed description of the prob-
lem to which the present invention i1s directed will be
provided with reference to FIG. 2.

FIG. 2 contains a portion of a pipeline microprocessor
200. The microprocessor 200 contains an instruction cache
202 for temporarily storing instructions to be executed by
the microprocessor. The instructions stored by the instruc-
tion cache 202 can be either integer instructions, or floating
point instructions. During the Fetch stage of the micropro-
cessor 200, an instruction 1s fetched from the instruction
cache 202 and provided to an instruction buffer 204. The
instruction buifer 204 provides temporary storage for one or
more 1nstructions that are to be translated and executed by
following stages i1n the pipeline.

The 1instruction buffer 204 provides instructions, to a
translator 206 during a translate stage of the pipeline. The
translator 206 translates, or decodes, the integer or floating
point 1nstructions 1nto micro operations that can be executed
by either an integer unit 208 or a floating point unit 210. If
the translated instructions operate on integer data, they are
provided to the mteger unit 208. If the translated instructions
operate on floating point data, they are provided to the
floating point unit 210.

During the Register stage of the pipeline, either the
integer unit 208 or the floating point unit 210 retrieves data
specified by translated instructions from the IU register file
209 or the FPU register file 211, respectively. The numeric
data 1n the IU register file 209 1s stored 1n 16, 32 or 64-bit
integer format. The data stored in the FPU register file 1s
stored 1 80-bit extended precision format. The specified
data 1s retrieved from the appropriate register file and 1is
provided to the IU 208 or the FPU 210 for operation. The

result of the operation 1s either stored back into the IU

US 6,754,810 B2

S

register file 209, via bus 214, or the FPU register file 211, via
bus 216, or 1s written 1into memory 212. One skilled 1n the
art will appreciate that although portions of the memory 212
may be cached within the microprocessor 200, the memory
212 1ndicated 1s external to the microprocessor 200. Thus,
when either the IU 208 or the FPU 210 needs to write data
to, or read data from the memory 212, the microprocessor
200 delays processing until the memory 212 can respond.

In the prior art, 1f data resides in the FPU register file 211
(in extended precision format), and it is needed by the
integer unit 208, a programmer 1s required to first execute an
instruction that converts the data in the FPU register file 211
into the desired integer format, and then stores the converted
data mto the memory 212.

Within an x86 microprocessor, the instruction that per-
forms this conversion/move operation 1s the FIST 1nstruc-
tion. The FIST 1instruction converts the value stored in a
floating point register ST 1nto a signed integer according to
the rounding control specified 1n a floating point control
word. The FIST instruction then transfers the result to a
memory destination in the memory 212 that 1s specified by
the 1nstruction. The FIST instruction, within the Pentium
microprocessor manufactured by Intel Corporation, requires
6 clock cycles to perform the conversion and transter. After
the data 1s stored 1nto the memory 212, if 1t 1s desired by the
integer unit 208, it 1s then retrieved from the memory 212.
An instruction that performs the retrieval 1s the MOV
instruction. The MOV i1nstruction retrieves the converted
data and stores 1t 1nto the IU register file 209. As mentioned
above, the process of storing the converted data into the
memory 212, and then retrieving the data from the memory
212 adds significant delay 1n processing the data. In the case
of the Pentium microprocessor, at least 7 clock cycles are
required to convert and move a single datum from the FPU

register file 211 to the IU register file 209.

Alternatively, 1f the FPU 210 requires data that 1s 1n the
IU register file 209, a programmer must first execute an
instruction that moves the integer data from the IU register
file 209 to the memory 212. This instruction 1s the MOV
instruction, and typically requires a single clock cycle. The
programmer must then execute an instruction that retrieves
the data from the memory 212, and converts the data to the
correct floating point format, before storing the data into the
FPU register file 211. An instruction for performing the
retrieval and conversion 1s FILD. This instruction converts
the source operand 1n the memory 212 mto extended pre-
cision floating point format, and pushes it into the FPU
register file 211. The FILD instruction typically requires 3
clock cycles. So, 1f the FPU register file 211 requires a single
datum from the IU register file 209, at least 4 clock cycles
are required.

Both of the above scenarios presume that the micropro-
cessor 200 can access the memory 212 immediately. It 1s
possible, however, 1n a multi-master environment that the
microprocessor 200 may have to wait longer than 1s speci-
fied above to access the memory 212, thus adding further
delay to the process. Moreover, 1f multiple pieces of data are
required to be shifted between the IU register file 209 and
the FPU register file 211, the problem of delay i1s exacer-

bated.

Now referring to FIG. 3, a portion of a microprocessor
300, according to the present invention 1s provided.
Specifically, the portions that are shown are an integer
register file 309 and a floating point register file 311. The
integer register file 309 contains a plurality of 32-bit regis-
ters for storing either 16 or 32-bit integers. The floating point

10

15

20

25

30

35

40

45

50

55

60

65

6

register file 311 contains a plurality of 80-bit registers for
storing floating point data 1in extended precision format. In
addition, the floating point register file 311 1s configured to
allow 16, 32 or 64 bit integers to be stored. In one
embodiment, the 16, 32 or 64 bit integers are stored into bits
0-63, typically associated with the significand. With the
floating point register 311 configured to store integer values,
the floating point register 311 can be used as intermediate
storage of data between the integer register file 309 and the
floating point register 311, without requiring data to be
stored 1n an external memory. Transfer between the integer
register file 309 and the floating point register file 311 1s
accomplished using a bus 320. One skilled in the art will
appreciate that the bus 320 1s 1llustrative only. In a pipeline
microprocessor, both the integer register file 309 and the
floating point register file 311 have multiple read/write ports
that are accessed during a register stage and/or a write back
stage.

Also located within the register file 311 1s conversion
logic 315. The purpose of the conversion logic 315 1s to
convert data within the floating point register file 311 1nto a
desired format. The conversion logic 315 can convert
extended precision floating point data into 16, 32 or 64 bit
integer data, or vice versa. The methods for bi-directionally
converting and moving data between the integer register file
309 and the floating point register file 311 will be further
described below with reference to FIGS. 6, 7.

Now referring to FIG. 4, a table 400 1s shown 1illustrating
an 1nstruction set according to the present invention for
converting data between floating point and integer formats,
and for moving data between a floating point register file and
an 1nteger register file. The table 400 1s separated 1into
conversion instructions and move 1nstructions.

The Conversion instructions are of two types: 1) Floating
point to Integer (FMXCVT __xF); and 2) Integer to Floating
Point (FMXCVT__Fx). The FMXCVT__xF instruction con-
verts the contents of a floating point register (in 80-bit:
extended precision format) into an integer format of either
16, 32 or 64 bit, depending on the form of the instruction,
and stores the result back into the floating point register file.
The FMXCVT__Fx instruction converts the contents of a
floating point register (in 16, 32 or 64-bit format) into
extended precision format, and stores the result back into the
floating point register file.

The Move instructions are also of two types: 1) Move
from Floating point register file to Integer register file; and
2) Move from Integer register file to Floating point register
file. The Floating Point to Integer instructions allow a
programmer to specily the form of the data to be moved 1nto
the integer register file. For example, if the data to be moved
1s 1n 32-bit integer format, a programmer would specity the

instruction FMXMOV_ IL.

Alternatively, the Integer to Floating point instructions
move the contents of an integer register into a floating point
register, according to the format specified by the mstruction.
For example, 1f the data to be moved 1s a 64-bit integer, the
programmer would use the FMXMOYV__FL nstruction. In
onc embodiment, since the integer register file contains
32-bit registers, a 64-bit move, to or from the integer register
file, writes or reads the first 32-bits from the integer register
specified by the move 1nstruction, and reads or writes the
second 32-bits from the next integer register following that
specified by the instruction.

In view of the above, operation of the present mnvention
will now be described with reference to FIGS. 5-7.

Referring first to FIG. §, a portion of a pipeline micro-
processor 500, incorporating the present invention, 1S

US 6,754,810 B2

7

shown. The microprocessor includes similar stages and
elements, as described above with reference to FIG. 2, but
incorporates the register files described below with reference
to FIG. 3. Like elements have like numbers, with the
hundreds digit replaced by 5.

In operation, if the IU 508 requires data located within the
FPU register file 511, a programmer can execute two
instructions, according to the formats described above with
reference to FIG. 4. The first instruction 1s of the form
FMXCVT__xF to convert the floating point number 1nto an
integer, and restore the integer 1nto the FPU register file 511.
The second instruction i1s of the form FMXMOV_ Ix to
move the converted datum to the designated register within
the IU register file 509. It should be appreciated that neither
of these nstructions required the microprocessor 500 to
access the memory 512, either to store the converted data, or
to retrieve the converted data. Thus, 1n many instances, the
instructions that convert the data and move the data can be
performed within a single clock cycle.

Moreover, since the FPU register file 511 1s capable of
storing data in integer format, the move 1nstructions and the
convert 1mstructions may be separated 1n time. This allows a
programmer to insert other instructions into the pipeline
between the move and convert operations, either to prevent
stalls associated with interlock dependencies, or to perform
multiple moves or conversions, back to back.

The methodology for allowing the FPU register file 511 to
access data in the IU register file 509 1s similar to that
described above. However, rather than performing the con-
version first, a programmer first moves the desired data from
the IU register file 509 into the FPU register file S11. The
programmer then converts the data into floating point
format, according to whether the data moved was 1 16, 32
or 64-bit mnteger format. Again, since the move and convert
operations are distinct, they need not follow each other
directly. Rather, other instructions can be 1nserted between
the move and convert operations, as described above.

Now referring to FIG. 6, a flow chart 600 1s provided that
illustrates the method of the present invention for moving
data from a FPU to an IU. The process begins at step 602 and
proceeds to step 604.

At step 604, the data to be moved i1s converted from
extended precision floating point format to the desired
integer format, and 1s stored back into the floating point
register file. Flow then proceeds to step 606.

At step 606, the converted data 1s moved from the floating
point register file mto the integer register file, as specified by
a move 1nstruction. Flow then proceeds to block 608 where
the conversion/move process 1s complete.

Referring to FIG. 7, a flow chart 700 1s provided that
illustrates the method of the present invention for moving
data from an IU to a FPU. The process begins at step 702 and
proceeds to step 704.

At step 704, the desired data 1s moved from the integer
register file to the floating point register file. Flow then
proceeds to step 706.

At step 706, the moved data 1s converted from integer
format 1nto extended precision floating point format. As
explained above, the data will be converted according to the
convert 1nstruction specified by the programmer. After the
data 1s converted, flow proceeds to block 708 where the
process 1s complete.

Thus, whether data 1s located within an integer register or
a floating point register, or whether the data 1s 1n a floating
point format or an integer format, the present invention

10

15

20

25

30

35

40

45

50

55

60

65

3

allows a programmer to convert the data into a desired
format, and move the data bi-directionally between the
integer register file and the floating point register file,
without requiring a microprocessor to perform a bus access
to external memory.

Although the present invention and its objects, features,
and advantages have been described 1n detail, other embodi-
ments are encompassed by the mvention. For example, the
conversion logic described above has been illustrated in
connection with the floating point register file. It 1s possible
that the conversion logic could be located either with the
integer register file, or 1 another portion of the micropro-
cessor. Moreover, although the floating point register file has
been used to store integer values, this selection was made
because the typical size of floating point registers allows
storage of 64-bit integers. However, 1n future processors, it
may be desirable to allow data 1n floating point format to be
temporarily stored in the integer register file. Whether the
converted data 1s temporarily stored in the floating point
register file, or the integer register file, or whether the
conversion logic 1s coupled to either of the register files, 1s
not of concern. Rather, it 1s the bi-directional transfer
between register files, without requiring access to external
memory, and the separation of the conversion and move
operations, that provides the advantages of the present
invention.

Those skilled 1n the art should appreciate that they can
readily use the disclosed conception and specific embodi-
ments as a basis for designing or modifying other structures
for carrying out the same purposes of the present invention
without departing from the spirit and scope of the invention
as defined by the appended claims.

We claim:

1. A microprocessor for executing macro 1nstructions,
including MOVE macro instructions and CONVERT macro
Instructions, comprising;:

an instruction buffer, for holding the MOVE and CON-

VERT macro mstructions;

a translator, coupled to said instruction buffer, for receiv-
ing the MOVE and CONVERT macro istructions and
for translating the MOVE and CONVERT macro
instructions into MOVE and CONVERT micro

Instructions, respectively;
a first register file, for storing data in integer format;

a second register file, for storing data in floating point
format and 1n 1nteger format;

conversion logic, coupled to said second register file, for
converting data 1n said second register file from floating

point format to mteger format upon execution of said
CONVERT micro nstructions; and

a bus, coupling said first register file to said second
register file, to allow data stored in integer format
within said second register file to be transferred from
said second register file to said first register file, without
requiring transfer to external memory, upon execution
of said MOVE micro 1nstruction.

2. The microprocessor as recited 1n claim 1 wherein the

macro 1nstructions are x86 compatible macro instructions.

3. The microprocessor as recited in claim 1 wherein each
of the macro instructions are translated by said translator
Into one or more micro 1nstructions.

4. The microprocessor as recited 1n claim 1 wherein said
instruction buffer holds one or more of the macro instruc-
tions.

5. The microprocessor as recited 1n claim 1 wherein said
first register file 1s utilized by a first pipeline within the
microprocessor which operates on data stored in integer
format.

US 6,754,810 B2

9

6. The microprocessor as recited 1n claim 1 wherein said
second register file 1s utilized by a second pipeline within the
microprocessor which operates on data stored 1n floating
point format.

7. The microprocessor as recited in claim 1 wherein said
integer format comprises data in word imteger format of
sixteen bits.

8. The microprocessor as recited 1n claim 1 wherein said
integer format comprises data in short integer format of
thirty-two bits.

9. The microprocessor as recited 1n claim 1 wherein said
integer format comprises data 1n long integer format of
sixty-four bits.

10. The microprocessor as recited 1n claim 1 wherein said
floating point format comprises data in single precision
format of thirty-two bits.

11. The microprocessor as recited 1n claim 1 wherein said
floating point format comprises data in double precision
format of sixty-four bits.

12. The microprocessor as recited in claim 1 wherein said
floating point format comprises data 1n extended precision
format of eighty bits.

13. The microprocessor as recited 1n claim 1 wherein said
second register file comprises a plurality of registers, each of
which can store data in either integer format or floating point
format.

14. The microprocessor as recited in claim 1 wherein
before data is transferred over said bus from said second
register file to said first register file, it 1s first converted by
sald conversion logic mto integer format.

15. A pipelined microprocessor having at least two pipe-
line stages, a first stage for operating on data stored in
integer format, and a second stage for operating on data
stored 1n floating point format, the pipelined microprocessor
comprising:

a translator, for receiving macro instructions, said trans-
lator translating said macro 1nstructions into first micro
instructions for execution by the first stage, or second
micro 1nstructions for execution by the second stage;

a first register file, coupled to the first stage, for storing
data 1n 1nteger format;

a second register file, coupled to the second stage, for
storing data in integer format and in floating point
format;

a bus, coupling said first register file and said second
register file, to allow data stored 1n integer format to be
transferred from said second register file to said first
register file.

16. The pipelined microprocessor as recited 1 claim 15
wherein said macro instructions are directed to either the
first stage or the second stage of the microprocessor.

17. The pipelined microprocessor as recited 1n claim 16
wherein said macro instructions that are directed to the
second stage comprise:

a first convert macro 1nstruction, for causing said second
stage to convert data stored 1n said second register file
from floating point format to integer format.

18. The pipelined microprocessor as recited 1 claim 16

wherein said macro instructions that are directed to the
second stage comprise:

a second convert macro 1nstruction, for causing said
second stage to convert data stored in said second
register file from integer format to floating point for-
mat.

19. The pipelined microprocessor as recited i claim 16

wherein said macro instructions that are directed to the
second stage comprise:

5

10

15

20

25

30

35

40

45

50

55

60

65

10

a first move macro instruction, for causing said second
stage to move data stored in integer format i1n said
second register file to said first register file.

20. The pipelined microprocessor as recited 1n claim 15

further comprising;:

conversion logic, coupled to said second register file, for
converting data stored 1n said second register file from
integer format to floating point format.
21. The pipelined microprocessor as recited in claim 15
further comprising;:

conversion logic, coupled to said second register file, for
converting data stored 1n said second register file from
floating point format to integer format.

22. A method within a microprocessor for transferring
data between a first register file which stores data in integer
format and a second register file which stores data 1n both
integer format and floating point format, the method com-
prising:

providing the first register file within a first execution unit

within the microprocessor;

providing the second register file within a second execu-
tion unit within the microprocessor;

coupling the first register file to the second register file to
allow data stored i1n integer format within the second
register file to be transferred to the first register file; and

upon receipt of a move macro 1instruction by the

MICroprocessor, translating the move macro instruction
Into a move micro 1nstruction which transfers data

specified by the move macro instruction from the
second register file to the first register file; and

providing the move micro instruction to the second execu-

tion unit to accomplish the transfer.

23. The method as recited 1n claim 22 wherein said
coupling 1s provided for by a bus that connects the first
register file to the second register file.

24. The method as recited 1in claim 22 wherein said step

of translating 1s performed by a translator.
25. The method as recited 1n claim 22 further comprising:

before transferring data specified by the move macro
instruction from the second register file to the first
register file, converting the data from floating point
format 1nto integer format.

26. The method as recited 1in claim 25 wherein said step
of converting stores the converted data into the second
register file.

27. A method for converting data within a second register
file from floating point format to integer format and for
moving the converted data to a first register file, the method
comprising:

receiving a CONVERT macro imstruction specifying data

to be converted from floating point format to integer
format;

translating the CONVERT macro 1nstruction into a CON-
VERT micro instruction;

executing the CONVERT micro instruction to convert the

specified data from floating point format to integer

format, said step of executing comprising;:

reading the specified data in floating point format from
the second register file;

converting the specified data from floating point format
to mteger format; and

storing the converted data into the second register file;
and

US 6,754,810 B2

11

recerving a MOVE macro instruction specifying data to
be moved from the second register file to the first

register file;

translating the MOVE macro mstruction into a MOVE
micro 1nstruction;

executing the MOVE micro instruction to move the
specified data from the second register file to the first
register file without requiring transfer to external

memory.

12

28. The method of claim 27 wherein after said step of

executing, the converted data 1s transferred to a first register

file.
29. The method of claim 28 wherein the first register file

> stores data in integer format.
30. The method of claim 27 wherein the second register

file stores data in 1nteger format and floating point format.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description/Claims
	Page 11 - Claims
	Page 12 - Claims

