US006822954B2
a2 United States Patent (10) Patent No.: US 6,822,954 B2
McConnell et al. 45) Date of Patent: Nov. 23, 2004
(54) TELECOMMUNICATIONS GATEWAY 6,243,581 B1 * 6/2001 Jawanda .................. 455/432.2
6,317,831 Bl * 11/2001 Kilg .eoveeeeerereenennae.. 713/171
(75) Inventors: Richard McCOnne]l’ Belfast (GB), 6,377,982 B 472002 Ra1 et al. .ooovevii 709/217
Denis Murphy, Belfast (GB) 6,393,482 B1 * 5/2002 Raietal. ....ccevvnvenenn... 709/225
6,400,722 B1 * 6/2002 Chuah et al. ............... 370/401
S - 6,414,950 B1 * 7/2002 Rai et al. vocoeervevnnn.... 370/338
(/3)  Amsignee: gplf?w?;fE?)Systems (SOL) Limited, 6.421.714 B1 * 7/2002 Rai et al. wovovrvvvrvvrnn. 709/217
ubiin 6,507,589 Bl * 1/2003 Ramasubramani et al. . 370/465
l_ . . Lo . 6,587,684 Bl * 7/2003 Hsu et al. cvevvveee..... 455/419
(*) Notice:  Subject to any disclaimer, the term of this 6,594,484 Bl * 7/2003 Hitchings, Jr. ........... 455/414.1
patent 1s extended or adjusted under 35 6,621,505 B1 * 9/2003 Beauchamp et al. ........ 345/764
U.S.C. 154(b) by 585 days. 6,721,288 B1 * 4/2004 King et al. ................. 370/310
2003/0055870 A1 * 3/2003 Smethers ...ooovvvvennnnnn... 709/203

(21) Appl. No.: 09/919,920

(22) Filed: Aug. 2, 2001

(65) Prior Publication Data
US 2002/0015403 Al Feb. 7, 2002

Related U.S. Application Data

(63) Continuation of application No. PCT/IE00/00017, filed on

Feb. 3, 2000.
(30) Foreign Application Priority Data
Feb. 4, 1999  (IE) iiiiiiiiiiiiiiiieeieeeeceeeeeee e 990076
(51) Int. CL7 e, HO041. 12/66
(52) US.CL ..., 370/352; 370/357; 370/389,;
370/401
(58) Field of Search ................................. 370/352, 349,

370/345, 389, 467, 465, 466, 338, 401,
354, 328, 357; 705/40, 44, 34; 455/433,
556, 426, 466, 435, 445

(56) References Cited
U.S. PATENT DOCUMENTS
6,185,208 B1 * 2/2001 Lia0 +eovveveeereerreererrnnn, 370/392

36

FOREIGN PATENT DOCUMENTS

EP 0700231 3/1996
WO WO 97/22209 6/1997

* cited by examiner

Primary Examiner—Wellington Chin

Assistant Examiner—Jamal A. Fox
(74) Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &

Zatman LLP
(57) ABSTRACT

A gateway has a stack with a bearer adaptation layer and an
HTTP client. The gateway may be connected by an HT'TP
link to an origin server and by a bearer interface to a mobile
network. It may also be connected by an HTTP link to a
WTA server. A context manager 1s a user on the stack and
supports interfaces to allow access to external entities 1n a
versatile manner. An event manager captures events includ-
ing billing events and writes to an event log and to a billing
log. A management entity provides overall control and sets
conflgurations for the event manager.

44 Claims, 5 Drawing Sheets

26 a7 28 29 30

TCP/IP



U.S. Patent Nov. 23, 2004 Sheet 1 of 5 US 6,822,954 B2

1
L. Mobile Operators Domain

Origin Server

- .
- -
— L4

Operators

()
< Network

Other

1 Applications
° ' Platforms Wireless Telephony

Application Server

T T L L LTI T I ey appp-pary § L g

: ~ HTTP e, 3€ATEY Interface (e.g. SMS)

Radio Interface <—> Optional Interface

Fig. 1



U.S. Patent Nov. 23, 2004 Sheet 2 of 5 US 6,822,954 B2

32 ']
gateway
database
Fig. 2

30

29
UDP/TF

28
to/from
LDAP C/E HTTP modem server
1 Cient Client

WDP 21

Context Manager Core 31

' 8

Billing
.\'37

25
4&’ K‘
Session S
Manager
Management
Core
47 46 \
35
EventManager | < ——>
36

-



U.S. Patent Nov. 23, 2004 Sheet 3 of 5 US 6,822,954 B2

Push initiator i | Push initiator 2
‘ «v®
Context
i Manager :
Push Initiator 1 } Push Initiator | | SAP Port ' Push Initiator 2 |
Socket 1 Socket 2 (Port 50000) | " Socket 1

I

Context
Manager

Fig. 3



U.S. Patent Nov. 23, 2004 Sheet 4 of 5 US 6,822,954 B2

Bie [(O0 1 2 3 4 05 6 7]
Nes { ¢ - TAGID e N
_ _ |
o ___ LENGTH ]
~ VALUE L .
L e ——— — NURUSU— S
Fig. 4(a)
{ MSB | LSB
Bit | {0 i 2 3 4 5 5 7
Nos | [ I OPERATION_START |
|
| Operation Lenath . L
- __ OPERATION /1
- ] LENGTH o
] _ VALUE . i
Operation .
Length __PRIMITIVE_TYPE
(Service T | ENGTH
Primitive) ]
- | _ VALUE ] i
{ TAG ﬁ
- LENGTH _
i |
. VALUE |
| i
- o Fig. 4(b) -



U.S. Patent Nov. 23, 2004 Sheet 5 of 5 US 6,822,954 B2

CISCO 5300 B RAS I l DATABASE

Radius Acc Req - Start Acc - no [P Address ' |
RAS shall not write «
, the IP/MSISDN to the
Radius Acc Rsp | database as the IP is
- NULL |
Radius Acc Req — Interim Acc (1™ packet) RAS inserts IP/MSISDN into l
Database
i Radius Acc Rsp (1" packet) l
1
Radius Acc Req — Interim Acc (nth packet) |
I — - _ | |
RAS inserts IP/MSISDN into
Database
Radius Acc Rsp {nth packet) I

Radius Acc Req — Stop Acc

RAS deletes [P/MSISDN from
Patabase

w -

Radius Acc Rsp

e

Fig. 5



US 6,822,954 B2

1
TELECOMMUNICATIONS GATEWAY

This patent 1s a continuation of International Application
no. PCT/IE00/00017, filed on Feb. 3, 2000 under the Patent
Cooperation Treaty (PCT), which claims priority from Ire-
land application no. 990076, filed on Feb. 4, 1999.

INTRODUCTION

1. Field of the Invention

The mvention relates to a gateway for telecommunication
networks, and particularly for networks providing Wireless
Application Protocol (WAP) capability.

2. Prior Art Discussion

In recent years, WAP specifications have been developed
to govern the iteroperability aspects of WAP functionality.
These specily a stack having a bearer adaptation layer for
interfacing with a bearer, and a client for interfacing with an
origin server to obtain content.

At present, implementation of such functionality involves
much adaptation of existing network nodes. Also, it 1s
complex to add functionality for auxiliary services which
add value for a network operator.

OBJECTS OF THE INVENTION

The 1nvention 1s directed towards providing a gateway
which may be easily connected 1n a network to allow a range
of services to be provided 1n a versatile manner, and which
1s scaleable and modular.

SUMMARY OF THE INVENTION

According to the ivention, there 1s provided a telecom-
munications gateway comprising a stack comprising a
bearer adaptation layer for interfacing with a bearer, and a
client for mterfacing with an origin server, characterised in
that the gateway further comprises a context manager acting
as a user on the stack and supporting an interface means to
an external entity to provide an auxiliary service.

This 1s a very flexible and versatile configuration as the
context manager acts as a platform for features by virtue of
being a user on the stack and having means for supporting,
an 1nterface means.

In one embodiment, the interface means comprises an
accounting server comprising means for accepting, storing
and making available a mapping between a client telephone
number and the IP address allocated by the network.

Preferably, the accounting server comprises means for
interfacing with an external accounting client for receiving
the mapping mnformation.

In a still further embodiment, the gateway further com-
prises a database, and the accounting server comprises
means for storing the mapping data 1n the database.

Preferably, the accounting server comprises means for
interfacing according to the RADIUS accounting protocol.

In one embodiment, the interface means comprises a
lightweight directory access protocol (LDAP) client com-
prising means for accessing an external system to retrieve
subscriber data.

In one embodiment, the LDAP client comprises means for
using mapping associations managed by the accounting
server to 1dentily subscribers.

In one embodiment, the context manager comprises
means for controlling access to content.

In a further embodiment, the context manager comprises
means for determining access criteria from an external
system via the LDAP client.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another embodiment, the context manager comprises
means for accessing a stored URL whitelist, a URL blacklist,
and a URL greylist of URLSs which are accessed only under
set conditions.

In a further embodiment, the context manager comprises
means for retrieving the condition via the LDAP client.

Preferably, the whitelist, the blacklist, and the greylist are
stored 1n an 1nternal database.

In another embodiment, the context manager comprises
means for determining class of service values for subscrib-
ers.

Preferably, the context manager comprises means for
determining URL class of service values and comparing
subscriber and URL class of service values to control access.

In one embodiment, the context manager comprises
means for using a hashing algorithm process for searching
said lists.

In another manager, the context manager comprises
means for inferring from the lists an indication of whether
the telephone number should be transferred to the origin
server, and for implementing the transfer via the origin
server client.

Preferably, the interface means comprises a push API
comprising means for allowing an external entity to pass
push requests to the context manager.

In one embodiment, the context manager comprises
means for recerving a URL 1n a push request and for
subsequently retrieving the content identified by the URL,
and for pushing the content to the client via the stack.

In a further embodiment, the context manager comprises
means for receiving a push request with content and for
pushing the content to a client via the stack.

Preferably, the interface means comprises an encoder for
converting text WML to byte code format and, a compiler
for converting WMLscript to byte code format.

In another embodiment, the gateway further comprises an
event manager linked to the stack, and to the context
manager and the stack comprises means for sending events
to the event manager.

In one embodiment, the stack and the context manager
comprise means for identifying events 1n messages 1n either
direction.

In a further embodiment, events are identified by process-
ing code.

In one embodiment, the event manager comprises means
for accepting events and logging them.

In a further embodiment, the event manager comprises
means for providing TCP/IP connections with the context
manager and the stack for receiving events.

In one embodiment, the event manager comprises means
for receiving the events in a Tag Length Value (TLV) format.

In one embodiment, the event manager comprises means
for maintaining an event log and a billing log, and means for
logging billing events to the billing log.

Preferably, the event manager comprises means for
accessing event classification data from an internal database.

In one embodiment, the event manager comprises means
for making the classification data available to the stack and
to the context manager.

In another embodiment, the event manager comprises
means for controlling threads of queues for communication
of classification data.

In one embodiment, the gateway further comprises a
management entity linked to the context manager, the stack,
and the event manager for gateway management purposes.



US 6,822,954 B2

3

In another embodiment, the management entity comprises
means for providing a management GUI interface.

In a further embodiment, the management entity com-
prises means for setting event classifications for the event
manager.

In another embodiment, the management entity comprises
means for setting control data 1n an 1nternal database for the
context manager, the stack, and the event manager.

In one embodiment, the management entity comprises
means for controlling start up, shut down, and re-start via
message queues.

In a further embodiment, the management entity com-
prises means for setting event conditions as alarms, and the
event manager comprises means for automatically notifying
the management entity of alarms.

According to a further aspect, the invention provides a
method for providing access to an external entity by a
telecommunications network, the method comprising the
steps of:

providing a gateway having a stack comprising a bearer
adaptation layer,

providing a context manager acting as a user on a stack,
and

the context manager supporting an interface which

accesses the external entity.

In one embodiment, the context manager supports a
plurality of interfaces.

In one embodiment, an interface 1s an accounting server
which accepts, stores, and makes available a mapping
between a client telephone number and the IP address
allocated by the network.

In one embodiment, an interface 1s a lightweight directory
access protocol client which accesses an external system to
retrieve subscriber data.

In another embodiment, the method comprises the further
step of the context manager controlling access to content
according to URL and subscriber class of service values.

In one embodiment, the method comprises the further step
of the context manager inferring from a whitelist, a blacklist,
and a greylist an indication of whether a telephone number
should be transferred to an origin server, and implementing
the transfer via an origin server client.

In one embodiment, the method comprises the further step
of the stack automatically sending events to an event
manager, and the event manager maintaining an event log
and a billing log.

In one embodiment, the event manager sets event condi-
tions 1n a configurable basis.

DETAILED DESCRIPTION OF THE
INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention will be more clearly understood from the
following description of some embodiments thereof, given
by way of example only with reference to the accompanying,
drawings 1in which:

FIG. 1 1s a schematic overview showing a manner in
which a gateway of the mvention may be deployed m a
network,

FIG. 2 1s a diagram showing the architecture of the
gateway,

FIG. 3 1s a diagram showing layer interfacing,

FIGS. 4(a) and 4(b) are diagrams illustrating service
primitive formats, and

FIG. 5 1s a diagram showing accounting operations.

10

15

20

25

30

35

40

45

50

55

60

65

4
DESCRIPTION OF THE EMBODIMENTS

Referring to FIG. 1, a WAP gateway 1 1s connected 1n a
mobile operator’s domain 2. It has a bearer link with a
mobile operator’s network 3 for handsets (clients) 4. The
gateway 1 1s also connected by a HT'TP link to a wireless
telephony application (WTA) server 5. The domain 2 also
comprises other application platforms 6 connected by radio
interfaces. The gateway 1 1s also connected by a HT'TP link
to an origin server 10. This 1s a typical deployment,
however, only the links to the network 3 and to the origin
server 10 are essential.

The gateway 1 allows WAP capable handsets (i.e. those
equipped with a browser and a WAP stack) to access
applications hosted on standard HT'TP servers based in the
mobile operator’s domain 2 and elsewhere (for example,
service providers).

The gateway 1 comprises a WAP Stack, which 1imple-
ments the WAP protocol itself. The stack communicates with
a corresponding WAP stack on the handset 4 to allow the
content to be requested and downloaded from the appropri-
ate server. The gateway 1 also comprises an HT'TP 1.1 client
which allows content to be retrieved from the relevant origin
servers. Origin servers are used to host the content and
applications to be served to the handset. They are capable of
serving HI'ML and JavaScript, but for WAP Services serve
WML and WMLScript. All content on the origin servers 1s
located using standard URLs and so there 1s effectively no
limit on the number of origin servers that can be accessed
provided that they serve compatible content. Origin servers
may be located within the mobile operator’s domain, within
an ISP, or on the Internet. In general, the location of the
origin server 1s determined by the nature of the content or
applications which it serves. For example, if an operator
wishes to provide access to a banking application for WAP
subscribers the origin server 1s likely to be located at the
bank’s premises, where 1t can be closely controlled. The
interface between the origin server 10 and the gateway 1 1s
HTTP 1.1. This means that the origin server does not need
to be aware that 1t 1s serving WML/WMLScript, that 1t 1s
communicating with a WAP Gateway, or that the client 1s a
handset 4 communicating over a WAP-enabled mobile net-
work 3.

Since the handset 4 1s also a telephone, WAP specifies a
series of extensions to allow integration of normal mobile
network services with WAP Services. These extensions are
known as Wireless Telephony Application (WTA) Services.
Typical examples of WTA services are voice call setup and
call accept, and access to phone book information on the
handset. A typical application would be where an incoming
call 1s received at the handset, the browser displays details
of the caller having first compared the number with the
entries 1n the handset phonebook, and offers choices such as
accepting the call, rejecting the call, or diverting to voice-

mail. WTA services are constructed in WML and WML-
Script.

The WTA Server has a number of functions as follows.

WTA Repository

In order for WTA services on the phone to operate to a
cuaranteed level of performance, the immediate content
required for those services must be stored on the phone.
However this content 1s maintained on the WTA Server by
the operator and downloaded to the phone at appropriate
points. For example, it can be pushed to the phone by the

WTA Server 5.



US 6,822,954 B2

S

WTA Content Storage

The WTA Server provides access to content for WTA
applications 1n the same way that the origin server 10
provides access to normal content and applications. For
example, the WTA Server 5 might host an application which
accesses prepaid billing information within an operator’s IN
network.
Integration with Existing Networks

A key objective 1s that WAP services should be capable of
interacting with an operator’s existing network
infrastructure, for example, an intelligent network (IN).
Therefore, the WTA Server can contain functionality to
provide this interface, for example, an INAP or MAP
interface to the SS7 network.

Referring to FIG. 2, the gateway 1 comprises a stack 20
comprising in sequence form the lowermost layer,

a wireless datagram protocol (WDP) layer 21,

a wireless transport layer security (WTLS) layer 22,
a wireless transaction protocol (WTP) layer 23, and

a wireless session protocol (WSP) layer 24.

A context manager 25 1s a user on the stack 22 and
supports 1nterfaces to external entities. The following are the
interfaces in this embodiment.

a lightweight directory access protocol (LDAP) client 26,
a push API 27,

a compiler/encoder (C/E) 28,

a HT'TP client 29, and

a RADIUS accounting server 30.

The context manager 25 also comprises an executable
core 31 which 1s a user on the stack 20, and more particularly
the WSP layer 24. The core 31 supports the interfaces 26 to
30.

The gateway 1 also comprises an internal database 32
which 1s accessed by most major components of the gate-
way.

In addition, the gateway 1 also comprises an event man-
ager 35 which maintains an event log 36 and a billing log 37
and which interacts with all of the layers of the stack and
with the context manager 25. The event manager 35 1s
connected to a management entity 40 comprising a session
manager 45 and core executable 46. A management GUI 47
1s provided for the management entity.

The architecture 1s open, modular, and scaleable. Each
major component (including each layer of the stack 20)
comprises a separate multi-threaded Unix process. Commu-
nication between processes 1s through TCP/IP sockets which
can be configured to allow traffic throughput to be increased
as required. The processes can be distributed across hard-
ware platforms to provide optimum redundancy and/or to
maximise performance.

The WDP layer 21 interfaces with the bearer side and
provides a TCP/IP interface supporting SMPP and UCP
(EMI) protocols, and it also allows UDP/IP communication
with a WAP client.

On the Internet side, the HT'TP client 29 communicates
with the origin server 10 for download of WAP/WTA
(Wireless Telephony Application) applications and content.

The management GUI 47 controls the gateway by allow-
ing such tasks as Stop/Start of the gateway, monitoring
gateway processes, restarting after failures, updating con-
figuration data, and monitoring alarms. Much of this control
1s achieved by appropriate writes to the database 32.

Each layer of the stack 20 provides a service to one or
more upper layer of the stack or, in the case of the context
manager 25, to an external push 1nitiator via the push API
27. The context manager 25 provides the service and 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

therefore known as the Service Provider, while the push

initiator uses the service and 1s known as the Service User.

Each layer provides a Service Access Point (SAP) to enable

communication between the different layers of the gateway.

The SAPs allow service users to connect to the layer and to

access the service provided.

FIG. 3 1llustrates the SAP interface using as an example
a SAP provided by the context manager 25 to external push
initiator applications. The operation of the SAP interface 1s
the same for all layers; only the service primitives differ.
1. The context manager (CM) 25 creates a single SAP TCP

socket and binds it to a configurable SAP port. There 1s

only one SAP port for the CM 25 for use by all push
initiators. The CM 285 creates a single listener, which
listens on the SAP socket for incoming connections from
push 1nitiators. In FIG. 3, two push applications have
already connected to the CM SAP, Push Initiator 1 and

Push Initiator 2.

2. The push 1nitiator must know the port number of the SAP
for the service provider. For example, in FIG. 3 Push
Initiator 1 and Push Initiator 2 must know that the port
number for the CM SAP 1s 50000.

3. The push initiator connects to the SAP port and the
connection 1s accepted by the listener. The socket on
which the connection 1s established 1s different from the
socket on which the listener 1s listening. A separate port
within the CM 25 now deals with control of the connec-
tion to the push initiator and the listener returns to
listening for new connections from push initiators.

4. The CM 25 now waits for authentication by the service
user. The service user authenticates itself by sending a
Logon service primitive. The Service User ID and Pass-
word provided by the push 1nitiator are compared with
values held in configuration data for the CM SAP. If the
values do not match, authentication has failed; the socket
1s simply closed and an event/alarm 1s logged.

If the push 1nitiator 1s authenticated successtully, the CM
25 examines the configuration data to determine whether the
maximum number of simultaneous connections has been
exceeded for this push initiator. For example, 1in FIG. 3, Push
Initiator 1 has two connections to the CM 25. The CM’s
conflguration data for Push Initiator 1 defines the maximum
number of simultaneous connections that Push Initiator 1
can make to the CM. Therefore, 1f the maximum number of
connections for Push Initiator 1 was defined to be 2, any
subsequent connection attempts by Push Initiator 1 would be
rejected.

5. The CM 25 returns a Logon__Resp service primitive to the
service user to indicate successful authentication. The
primitive has only one field, Status. If the maximum
number of simultanecous connections has been reached for
the service user, the Status value will be set to the relevant
Status code. The socket will be closed once the Logon__
Resp 1s sent.

[f authentication 1s successful and the maximum number
of simultaneous connections has not been exceeded, a
Logon__Resp with a positive Status 1s returned and
exchange of service primitives between the push itiator
and the CM 25 can begin.

The following defines the generic format of the messages
(service primitives) exchanged between a service user (e.g.
push 1initiator) and a service provider SAP (e.g. context
manager 25). The service primitives provided for the Push
Interface conform to the Tag-Length-Value TLV format and
are defined below. All service primitives exchanged between
a service user and a service provider via a SAP use a generic
message format. Each service primitive 1s made up of a



US 6,822,954 B2

7

series of TLV elements and each TLV element 1s made up of
three mandatory fields, 1 the following order:

TAG_ 1D

This 1s a unique 1dentifier for the element, 1.¢. the Tag.

The TAG ID field 1s always 2 octets.
LENGTH
The length of the Value field in Octets, 1.¢. the Length.

The LENGTH field 1s of variable size and encoded
according to the “extension bit” mechanism.

VALUE

The value associated with the element, 1.e. the Value. The
number of octets 1in the Value field 1s defined by the
LENGTH field. The structure of a TLV 1s shown in FIG.
4(a).

The “extension bit” mechanism allows a series of octets
to be grouped together to make up a single LENGTH field.
The LENGTH field 1s a maximum of 5 octets long and when
decoded can represent an 1mposed maximum of 32 bits. The
“extension bit” mechanism uses bit 0 (the most significant
bit) of each octet of the field to signify whether or not an
octet 1s the last octet 1n the field. This means that only the
lower 7 bits are used as data out of each octet.

The rule 1s as follows:

Bit 0=1, then one or more octets follow.

Bit 0=0, then this 1s the last octet.
An example of the encoding follows:

Bit: O 7

10000001
11100001
00000010

An examination of bit 0 reveals that there are 3 octets 1n
the field. The actual value then 1s the combination of the
lower 7 bits 1n each octet, these are

1100001 0000010

These give a total decimal value of 28802.

The format of a service primitive message, 1.€. a message
passed to/from a SAP, is illustrated in FIG. 4(b). All mes-
sages must begin with an OPERATION__ START tag and an
operation length. As shown in FIG. 4(b), Operation Length
defines the length of the data remaining within the message,
1.€. the service primitive itself. The integrity of the message
can be verified by comparing the operation length with the
total length of the component fields of the service primitive.
The second field of the message must always be OPERA-
TION. This field 1dentifies the service primitive being used,
¢.2. Logon, WAP-Push, etc. The remainder of the fields are
the content of the service primitive 1tself and can be any set
of valid TLVs 1n any order.

The table below 1illustrates the raw TLV stream for an
S-Disconnect.req sent from the CM 235 to the WSP layer 24.
The values of string fields such as ERROR__BODY have
been left as ASCII text to aid clarity. Each octet of the TLV
value would contain the binary representation of each ASCII
character. In the example the Length only requires a single
octet. However, the length may be up to 5 octets using the
extension-bit mechanism.

5

10

15

20

25

30

35

40

45

50

55

60

65

Octet
Field Value Numbers
OPERATION__START 0 x 0000 1-2
Operation__Length 0 x 35 3
OPERATION 0 x 0001 4-5
Length 0 x 01 6
Value (S-Disconnect) 0 x 05 7
PRIMITIVE__SUFFIX 0 x 0002 8-9
Length 0x 01 10
Value (Req) 0 x 00 11
REASON__CODE 0 x O00E 12-13
Length 0 x 01 14
Value (401 - Assigned number 0 x 41 15
0 x 41)
ERROR_HEADERS 0 x O00F 1617
Length 0 x 07 18
Value (“EXAMPLE”) EXAMPLE 19-25
ERROR__BODY 0 x 0010 2627
Length 0x 15 28
Value (“Access Not Access Not Authorised 29-49
Authorised”)
SERVER__TRANSACTION__ID 0 x 0016 50-51
Length 0 x 04 52
Value 0 x 12131415 53-56

The following describes the layers 21 to 24 1n more detail.
21. Wireless Datagram Protocol (WDP)

The communications mechanism to transport data
between the gateway 1 and the handset 4 1s referred to as a
bearer such as Short Message Service (SMS) or Circuit-
Switched Data (CSD) connection. Different mobile bearers

exhibit very different bandwidth and latency characteristics.
For example, SMS messages are limited to 140 bytes. The
WDP layer performs all necessary bearer adaptation, 1.c.
adapting the data for transmission across or following
receipt from the chosen bearer. In general, adaptation
involves breaking up the data into fragments of an appro-
priate size for the bearer and interfacing with the bearer
network to transport the data. For example, for GSM SMS
adaptation involves fragmenting the data into segments of
140 bytes and sending this data in short messages (SM) to
the handset. The WDP layer on the handset reconstructs the
data from the received SMs and presents i1t to the higher
layers of the WAP stack. Since all adaptation 1s carried out
by the WDP layer, the higher layers of the WAP Stack do not
need any knowledge of the bearer. This allows the higher
layers of the WAP stack, and applications and browsers, to
remain Independent of both the mobile network and the
bearer. The gateway 1 supports SMS over SMPP V3.3 or
UCP as a bearer as well as CSD over UDP/IP.

22. Wireless Transport Layer Security (WTLS)

The WTLS layer provides privacy, data integrity and
authentication between two communicating applications.
Data 1s compressed and encrypted before being sent over
WDP, and 1s decompressed and decrypted when received
from WDP.

23. Wireless Transaction Protocol (WTP)

WTP 1s a lightweight transaction oriented protocol
designed to run on top of a datagram service (i.e. WDP). it
provides retransmission and acknowledgement services,
relieving the upper layers of these tasks.

24. Wireless Session Protocol (WSP)

The WSP layer provides session services to the WAP
application layer, allowing the exchange of requests and
responses. This layer provides two services as follows:

The Connection-Mode service allows a reliable session to
be established between a client and the gateway 1 over
which content can be requested and delivered. The



US 6,822,954 B2

9

client and the gateway 1 can negotiate a mutually
acceptable set of capabilities, for example, maximum
SDU size. The service also allows the session to be
suspended, and resumed on another bearer 1f required.

The Connectionless Mode service provides an unreliable
session service between the client and the gateway 1.
Connection-Mode service requires details of each session

to be recorded both in dynamic memory inside the WSP
Layer, and in persistent storage (within the database 32).
Session related imformation will change during the lifetime
of the session and 1t 1s the responsibility of the WSP layer 24
to update the persistent storage medium accordingly (for
example when a session 1s suspended, resumed, discon-

nected etc).

In addition, the WSP layer 24 provides a Push capability
allowing an application to send information to the handset
without the handset first requesting the information. A
typical Push application might be where a subscriber is
alerted when a stock value goes outside certain boundaries.

An Unconfirmed Push (unreliable) is provided by the Con-

nectionless service, while the Connection-Mode service
provides both Confirmed and Unconfirmed Push within an
established session.

The context manager 25 1s configured as a user to the
WSP layer 24, sending and receiving WAP format messages
to interface with important network nodes. The context
manager 25 accepts URL requests from the WSP layer 24
and passes these to the HTTP client 29 which retrieves the
associated WAP content either directly from cache (for

frequently accessed URL’s) or from the origin server 10
using HTTP 1.1 protocol over TCP/IP. If the request 1s
serviceable, the origin server 10 responds with the requested
content. Thus, the HTTP client for interfacing with the
origin server 10 1s an interface supported by the context
manager 25.

The interfaces 26, 27, 28, and 30 communicate with
various external entities to provide auxiliary services.

The LDAP interface 26 communicates with a subscriber
information repository This information remains resident on
the network operator’s existing subscriber database and may
be accessed during a WAP session using the subscriber
telephone number (MSISDN), in order to authenticate the
WAP client (subscriber) and possibly to retrieve information
such as “subscriber associated class of service values”,
which may then be used within the gateway 1 to control the
services (URLs) which a user is authorised to access. LDAP
1s an open, standard protocol specified by the IETF which
means that the gateway 1 can easily interface to subscriber
data systems which support LDAP. In addition, the gateway
1 can be tailored to interface to subscriber data systems
which do not support LDAP.

The gateway 1 authenticates the user initiating the WAP
session by sending a query containing the subscriber’s
MSISDN (obtained from the bearer), from the context
manager 25 to an (external) customer subscriber database
via LDAP, 1n order to verify that the subscriber in question
has been provisioned for WAP service. It 1s possible to query
the subscriber database over this interface using the clients’
MSISDN and co request information related to that client/
(subscriber). For example, is the subscriber WAP provi-
sioned for this network Yes/No? It “Yes” then provide
information on “class of service ” (COS) values associated
with subscriber. Subscriber class of service values (returned)
will then be stored as part of the subscriber’s WAP session
information within the gateway.

Subscriber and URL “class of service” values are used by
a context manager 25 URL whitelist/greylist/blacklist func-
tion. In this embodiment, the function 1s implemented as
follows. The lists are stored 1n the database 32. The function

10

15

20

25

30

35

40

45

50

55

60

65

10

1s accessed each time a subscriber makes a URL request
through the gateway. The URL being requested 1s first

compared against those listed in the URL Blacklist
(predefined by the operator). If the URL 1s matched then the

request 1s refused. Next, the URL whitelist/greylist is
accessed. If the URL 1s not matched then access 1s refused.
If the URL 1s matched and has an open class of service value,
then all subscribers will be allowed access. If the URL 1s
matched and has a class of service value other than open, 1t
will first be necessary to determine whether the user request-
ing the information has a matching class of service value
(COS values already retrieved from external database and
saved within the gateway) before allowing access to the
particular service. This 1s termed a “greylisted” URL. For
example, a premium rate URL service may have an associ-
ated class value of “1”. Subscribers wishing to access this
service must at least have an associated class of service
value of “17, 1.e. the user must subscribe to this type of
service before gaining access. The user may have other
assoclated class of service values, for example, class “2”
may 1ndicate entertainment services. URLs appearing 1n the
black list are barred to all users. The URL lists may be
updated by the operator from the GUI 47 and the updates are
written to the database 32.

It 1s also possible, using this function, to specily on a
per-URL basis, whether the client’s MSISDN 1s passed on to
the origin server 10 as part of the HTTP request.

This 1s useful for WAP services who wish to identify the
client before sending a personalised response back to the
handset.

Implementation of the list searches involves use of a
combination of indexes, hashing algorithms, and arrays to

achieve good efficiency. The following 1s the main process.

Convert hostname to lower case

Convert all “% HEX HEX” encodings 1n the filename to
their ASCII equivalent

Remove script data contained 1in URI 1.e. text after “?”
Hash the filename to obtain an array idex

Access the filename 1index at the component number given
in the previous step, and read the address contained
there

Access the memory address from the previous step (this
will point to the host name index)

Hash the host name to obtain an array index

Access the host name i1ndex at the component number
given 1n the previous step, and read the address con-
tained there

Access the memory address from the previous step (this
will point to an array of URI structures)

Perform a linear search on the URI structures array until
host/filename combination found or end of array
reached

If not found, search list of URI structures containing
wildcards

If found check “Allowable” field to determine 1if HTTP

request should be made or denied
The following sets out the linear search process.

while ( still nodes in list AND not found)
begin
filename = address of last char in filename
set found to false
set host found to false
set filename found to false



US 6,822,954 B2

11

-continued

set port found to false
while ( *filename == *(structure—filename) AND still characters
to test)
begin
decrement filename pointer
decrement structure—filename pointer
end while
if scanned all of filename then set filename found to true
if (filename found is true) then
while ( *host == *(structure—host) AND still characters to test)
begin
increment host pointer
increment structure—=host pointer
end while
if scanned all of host then
set host found to true
end 1f
if (host found is true) then
if ( port == structure—port)

set port found to true
end 1f

end 1f
end 1f
if filename found and host found and port found then
read allowable field
set found to true
else
move to next node in list
end 1f
end while
The following sets out the wildcard search.
while (still nodes in list and not found)
begin
move to next node 1n list
while (filename not found AND still characters to test)
begin
<% 3 )

if ( *(structure—filename) ==
begin
read next character in structure—filename after “*’
if no more characters after ‘*’ then
set filenamefound to true
else
skip characters in filename until char after “*” in structure—file-
name found
if char not found then break out of while
endif
end 1if
if (*filename == *(structure—=filename) ) then
increment filename pointer
increment structure—filename pointer
decrement chars to test
else
break out of while
end while
end while

A dedicated provisioning server for WAP subscribers may
be provided in the gateway 1, rather than integrating the
cgateway with an existing subscriber database in their net-
work. This involves a dedicated LDAP server which con-
tains a database for persistent storage of WAP subscriber
data, a provisioning interface (which can handle bulk

provisioning) and an LDAP interface towards the gateway 1.
The ‘PUSH’ API 27, allows an application to bind on to
the gateway 1 to send unsolicited information to the client.

The PUSH API 27 provides three options to the operator:

Push of WML/WMLScript content to the handset (will
require use of the compiler/encoder 28 prior to being

transferred to the handset).

Push of binary WAP content (compiled/encoded
WMLScript/WML content) and all other content types
defined by the WAP Forum to the handset.

Push of URL (in which case the HTTP client 29 will
source the WAP content from the location on the origin
server 1ndicated by the URL and download the content
to the handset).

10

15

20

25

30

35

40

45

50

55

60

65

12

Both connectionless and connection-orientated PUSH are
supported. The PUSH API 27 also provides a means by
which WAP and WTA applications may bind on to the
gateway.

To establish a connection to the gateway 1 over CSD
(Circuit Switched Data), a WAP device must firstly connect
to a modem server. The modem server dynamically allocates
an IP address for the WAP device and this IP address 1s then
used within all UDP/IP datagrams in all communications
with the gateway 1. In order for the gateway 1 to determine

which WAP subscriber 1s making a call, 1t has a mechanism
of mapping the IP address to the MSISDN provided by the

Radius Accounting Server (RAS) 30.
The (external) modem server operates as a client of the

RAS 30. The client 1s responsible for sending user account-
ing 1nformation, as specified in the RADIUS RFC2139

specification, to the RAS 30. The RAS 30 1s responsible for

rece1ving the accounting request and returning a response to

the client indicating that 1t has successfully received the
request. On call set up, the modem server sends a Radius

Accounting Message to the RAS 30, indicating start

accounting for the IP/MSISDN pair. The RAS 30 then

inserts the IP/MSISDN pair into the database 32 where 1t
may be accessed by the context manager 25. The context
manager 25 may append this MSISDN onto the URL query,
thus providing the origin server 10 with knowledge of which
subscriber 1s making the query. When the RAS 30 has

successtully handled an accounting request 1t will return a

response to the client indicating 1t has successtully received

the request. On call shutdown, the modem server sends a

RAS Accounting Stop Message to the RAS 30, indicating

stop accounting for the IP/MSISDN pair. The RAS 30

deletes the IP/MSISDN pair from the database 32 and sends

a response to the modem server. The following sets out the

RAS 30 interfaces within an operator’s network, as 1llus-

trated 1n FIG. §.

1. To establish a connection to the gateway 1, a WAP device
firstly connects to a modem server. The modem server
dynamically allocates an IP address for the WAP device
and this IP address 1s then used within UDP/IP datagrams
in all communications with the gateway 1. Internally 1n
the gateway 1, this IP address must be translated into an
MSISDN for the purposes of subscriber management.

2. The (external) Radius Authentication Server authenticates
the message.

3. The RAS 30 receives and processes the Radius Account-
ing Messages received from the modem server.

4. The RAS 30 mserts the IP/MSISDN pair into the database
32 on an accounting start and deletes the IP/MSISDN
from the database on an accounting stop.

. A Get 15 received by the gateway 1.

. In order to determine which subscriber has invoked the
Get, the context manager 25 retrieves the MSISDN from
the database 32 using the IP address.

The sequence need not 1nvolve a modem server, as 1n the
case with GPRS, and may use any service supporting
RADIUS accounting.

Regarding the compiler/encoder 28, some content types
defined by WAP have a compact binary format suitable for
efficient over-the-air transmission. The interface 28 converts
such content types from text to binary format. For example,
if the response body from the origin server 1s text WML, 1t
is passed to the Encoder for conversion to bytecode (binary
format). Similarly, if the response body is text WMLscript,
it 1s passed to the Compiler for conversion to bytecode. In
addition, the standard text HI'TP headers have an equivalent
compact binary format defined by WAP. The compiler/

N N



US 6,822,954 B2

13

encoder 28 also transcodes the content provider’s character
set to the mobile clients preferred character set. The context
manager 25 does not interfere with any content which 1is not
specified by the WAP Forum (i.e it will allow it to pass
through without alteration). The response i1s subsequently
passed to the WSP layer 24 for transmission to the client.

Referring again to FIG. 1, events are set throughout the
cgateway 1 as a request/response transaction 1s processed.

The classification of an event 1s decided by the event
manager 35, and 1s not known to the calling component. In
this way, a particular event may be reclassified (for example,
to be billable) by a change to the event manager event table
only. The event manager 35 collects the events recorded by
the stack 20, for example, SMS received, URL decoded, or
access to origin server refused. The type of the event may be
classified as:

Information
Critical
Alarm

Error

Events sent to the event manager conform to the TLV
format described above.

All events are written by the event manager 35 to the
event log 36. 1n the case where an event of classification
“Alarm” 1s received, the event manger 35 also notifies an
alarm panel on the gateway management GUI 47. Events
marked for billing are written also to the separate billing log
37. The following 1s an example of event table layout in the
event manager (configurable by the operator from the man-
agement system GUI 47).

Text Information

Event Event Class Event Level Billing Yes/No

1 0 (error) 1-255  No
2 1 (information) 1-255  Yes
3 1 1-255 No
4 2 (alarm) 1-255  No

All of the event information such as event classes 1s
defined as configuration data and loaded into a table by the
EM during 1nitialisation. This table 1s accessed by the EM
worker threads to determine where an event 1s to be output,
billing file or event file, and what information 1s to be output.

An event table 1s defined as an array of pointers to the
structures below. The Event ID 1s used as an index to the
array, while the structure pointed to by each array element
defines the data for the corresponding event.

Since ranges of event IDs are allocated to a component,
some array elements will point to NULL. In this situation, 1t
1s assumed that the event 1s invalid. The following in an
example.

typedetf struct event _array_t

{

UCH uchEvent_ level;
EventClass t enumEvent class:

/* The event level */
/* The event class eg. alarm.

error, info */

/* Whether the event 1s
billable (Y or N) */

/* Length of the event text */
/* Message text to be output */

UCH uchEvent_ billable;

US usEventlextlLen;
UCH *puchEventText;
} EventArray_ t;

A read/write lock 1s defined for the event table. A read
lock must be obtained 1n order to read from the table. A write

5

10

15

20

25

30

35

40

45

50

55

60

65

14

lock must be obtained 1 order to initialise or update the
table. The lock 1s defined as follows

pthread__rwlock t EM__FET_ Lock;
The pthread__rwlock_t type 1s defined as follows
typedef struct{

pthread__mutex_t rw__mutex; /* Access lock for structure

*f
/* Condition variable for
waiting readers */
/* Condition variable for
waiting writers */
/* Indicates that structure 1s
initialised */
rw__nwalitreaders; /* Number of waiting readers */

int rw__nwaitwriters; /* Number of waiting writers */

int rw__refcount; /* =1 if writer else number of readers */
} pthread__rwlock_t;

pthread__cond_t rw__condreaders;
pthread__cond_t rw__condwriters;

int I'W__magic;

int

The pthread_ rwlock_t definition 1s provided for infor-
mation purposes only. Access to and manipulation of read/
write locks 1s achieved through a set of APIs provided by the
RWlock module.

Since multiple threads may wish to write to the event log
and billing files at the same time, a mutex 1s required for
cach file. A thread must lock the mutex for the relevant file
before writing to the file. A data structure 1s defined as
follows

typedet struct log file_t

{
pthread__mutex_ t mutexFileLock; /* Protects the file */
FILE* plileLogFile; /* The log file to be written */
} LogFile_t;

Separate 1instances of this structure must be defined for the
event log and the billing file. If on writing to the file, a thread
discovers that the file has exceeded its maximum size, the
thread will close the file, rename and compress 1t, and reopen
a new file updating the pfileLogFile pointer. It will then
unlock the mutex.

The event manager 35 may add additional information
(such as a textual description) to the received events before
writing them to permanent storage (in the event log or billing
log). Events related to a request/response sequence through
the gateway are linked together by a unique Event Linkage
ID. This can be used when analysing the event log, to trace
all events related to a particular WAP request/response
transaction. This 1s useful when performing traffic analysis
or general troubleshooting. The Event Linkage ID 1s also
useful for associating billing events related to a particular
WAP request/response transaction together in the billing log.

It should be noted that events need not be reported to the
event manager 35. This will allow the operator to ensure that
only events which are deemed useful are reported to the
event manager 35 and onward to the event log 36. Each
event recorded within a stack process has an associated
“event level” (configurable) in the range of 1-255. There is
an overall event “threshold level” (also configurable). If an
event has an associated event level which 1s lower than the
overall event level, then the event 1s reported to the event
manager 35. These configuration levels are set within the
event manager 35 and are accessed using the threads
described above.

The event log 36 can be read using a typical Unix editor
such as VI Editor™ and can be searched with standard Unix
utilities. The procedure involves reading the event log at



US 6,822,954 B2

15

least on a daily basis 1in order to detect and resolve non-
critical gateway errors.

Events may be processed to analyse them and determine
actions to be undertaken 1n response to conditions detected
in this manner. The structure controlled by the event man-

ager 35 provides an excellent basis for such analysis and
action triggering. The following 1s a table of WDP events.

Event

[D Event Text Description

1 WDP has The WDP Layer has been successfully started up.
started
successfully

2 WDP Bearer  The bearer queue 1s full of datagrams waiting to
Queue con- be transmitted over the bearer. The size of the
gested bearer queue 1s configurable and may be too

small

This event can also be caused be the operation of
the SMSC slowing down due to congestion and 1s
not responding as normal to the WDP layer
requests to transmit datagrams.

Possible Action: Check the traffic levels on the
SMSC to determine the cause of this event. If the
traffic levels are normal and there 1s no con-
gestion then check that the size of the bearer

is not too small.

The Reassembly area in the WDP layer where the
datagrams are stored until all Short Message
fragments have been received, and where they are
then reassembled, 1s fully congested.

Possible Action: The size of the Reassembly area
in terms of the maximum number of datagrams it
can contain 1s configurable. Check that this value
1s not too small.

The bearer queue 1s 75% full of datagrams wait-
ing to be transmitted over the bearer. The size of
the bearer queue 1s configurable and may be too
small This event can also be caused be the
operation of the SMSC slowing down due to con-
gestion and 1s not responding as normal to the
WDP layer requests to transmit datagrams.

The Reassembly area in the WDP layer where the

3 WDP Common
Reassembly
Area congested

4  WDP Bearer
Queue 75%
congested

5 WDP Common

Reassembly datagrams are stored until all Short Message
Area 75% fragments have been received, and where they are
congested then reassembled, is 75% full.

6 WDP Bearer  The bearer queue 1s 90% full of datagrams wait-
Queue 90% ing to be transmitted over the bearer. The size of
congested the bearer queue 1s configurable and may be too

small This event can also be caused be the
operation of the SMSC slowing down due to con-
gestion and 1s not responding as normal to the
WDP layer requests to transmit datagrams.
Possible Action: Check the traffic levels on the
SMSC to determine the cause of this event. If the
traffic levels are normal and there 1s no con-
gestion then check that the size of the bearer

1s not too small.

The following 1s a table of context manager events.

Event

[D Event Text Description

3002 CM capabilities
[nvalid

Negotiable capabilities received 1in a Service
Primitive could not be decoded. Default
capabilities will be used.

For a connection-orientated transaction,
confirmation has been received from the client
following reception of content.

For a connection-orientated transaction, CM
has timed out waiting for a confirmation of
reception of content from the handset or has
received a confirmation message from WSP but

3003 CM matching
confirm job
found

3004 CM No Match-

ing Confirm
Job Found

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

Event

[D Event Text Description

no matching job has been located for the
message. If this event 1s occurring frequently
then it may indicate a network problem or
corruption in the WSP layer.

Action: Contact Support Services if the
problem persists.

3005 CM Compilation The compiler has failed to compile WML con-

Failed tent into binary format. The WML 1s invalid.
3006 CM Congested The layer 1s 75% busy. This 1s an information
75% Message only.
3007 CM Congested The layer 1s very busy due to a high level of
90% traffic.

Action: If this event occurs frequently then call
Support Services. It may be possible to
alleviate the problem 1n the short term by
increasing the number of worker threads for the
layer but 1t 1s advisable not to adjust the con-
figuration data until the Support Engineer has
been consulted.

The gateway 1 does not produce Call Detail Records
(CDRs). Instead, it produces Toll Tickets for each WAP

request/response transactions and makes these T1’s avail-
able to a mediation platform for post processing where WAP
related CDRs are produced.

The gateway 1 gathers extensive billing data for each
WAP request/response transaction, for example download of
content, made by a subscriber, URLs visited, or time taken
for download of content. This billing data 1s stored in the
billing log 37 and made available to the operator’s billing
system. To facilitate interaction with disparate billing
systems, billing data 1s stored i1n the billing log 37 1n a
generic and flexible format (in Tag-Length-Value (TLV)
format).

The billing log 37 contains events sent from the event
manager 35 which are classified as “billable events”. All
billable events related to a particular request/response trans-
action through the GW are linked using a unique Event
Linkage ID. The operator can decide which events should be
stored for billing purposes (it is a configurable entity within
the event manager 35). When the billing log reaches a size
threshold (configurable) or when a time period threshold
(also configurable) has been reached it 1s closed and nor-
mally archived within the gateway 1. The operator will
periodically poll the gateway for archived billing logs, 1n
which case the logs will be transferred to the operator billing,
mediation platform for post processing.

The data can be presented to the operator’s billing system
in a format which that system can easily accept. This
flexibility allows an operator to mtroduce and bill for new
services easily without having to make changes to their
existing billing system.

Session mformation 1s maintained by the WSP layer 24.
The session manager 45 provides a mechanism to obtain
information on a particular session or alter its behaviour (for
example, disconnect the session). It 1s possible to gain
access to the session manager 45 from the management
system GUI 47 and to view ongoing WAP sessions. Session
information related to active WAP sessions are cached
within the gateway 1 (in memory). This avoids the need to
retrieve session information from the database 32 each time
it 1s required. The size of this cache 1s a configurable entity.
The cache is periodically flushed (frequency is also a
configurable entity) to remove information related to ses-
sions which have not been 1n use for some time. Session
information related to WAP sessions that make requests for
download of content infrequently, should reside only on a
database.



